期刊文献+

基于点阵神经元响应时空信息的菌落图像边缘检测 被引量:3

Edge Detection in Colony Images Based on Spatial and Temporal Information of Responses from Lattice Neurons
下载PDF
导出
摘要 目的基于图像边缘检测所获得的目标轮廓细节质量对于后续图像分析或理解过程具有的重要作用,提出一种基于视觉机制的图像边缘检测新方法。方法构造视觉感受野窗口在经过Log-Gabor滤波器重构后的图像上滑动,对感受野内点阵神经元的发放时刻进行次序编码;同时考虑神经元之间的侧向抑制作用,最后经灰度逆映射获取边缘图像。结果基于点阵神经元响应时空信息的图像强弱边缘检测方法能够有效提取图像的边缘信息,同时也能够体现更多的图像细节。结论本文研究的图像边缘检测方法为利用视觉生理特性进行图像处理提供了崭新而有效的思路。 Objective Details of objects' contour can be acquired from edge detection, and the details are con- sidered important for later process of image analysis or understanding, so a new method of image edge detection based on vision mechanism was proposed in this paper. Methods A visual receptive field's window was constructed to slither on the image which has been reconstructed by Log-Gabor filter, and then the rank order of fire times of lattice neurons in the receptive field was encoded. Meanwhile, the lateral inhibition between neurons was considered. In the end, the edge image was acquired by gray inverse mapping. Results The meth- od of edge detection based on spatial and temporal information of responses from the lattice neurons extracted edge information effectively and reflected more image details. Conclusion The method of edge detection dis- cussed in the paper provides a brand-new and effective idea for image processing based on visual physiological characteristics.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2014年第2期94-100,共7页 Space Medicine & Medical Engineering
基金 国家自然科学基金资助项目(60872090 61201300) 浙江省自然科学基金资助项目(LY12F03006)
关键词 点阵神经元相应 边缘检测 LOG-GABOR滤波器 次序编码 侧向抑制 lattice neurons response edge detection Log-Gabor filter rank order coding lateral inhibition
  • 相关文献

参考文献22

  • 1Maini R, Aggarwal H. Study edge detection techniques[ J] and comparison of various image International Journal of Image Processing (HIP), 2009, 3(1): 1-11.
  • 2Juneja M, Sandhu PS. Performance evaluation of edge detec- tion techniques for images in spatial domain [ J ]. methodolo- gy, 2009, 1(5) : 614-621.
  • 3Rokem A,Silver MA. A model of encoding and decoding in V1 and MT accounts for motion perception anisotropies in the human visual system[J]. Brain research, 2009, 1299: 3-16.
  • 4Raudies F, Neumann H. A model of neural mechanisms in monocular transparent motion perception[J]. Journal of Phys- iology-Paris, 2010, 104(1 ): 71-83.
  • 5Webb BS,Ledgeway T, McGraw PV. Relating spatial and temporal orientation pooling to population decoding solutions in human vision[ J]. Vision research, 2010, 50(22) : 2274- 2283.
  • 6Basttirk A, Gtlnay E Efficient edge detection in digital images using a cellular neural network optimized by differential evolu- tion algorithm[ J ]. Expert Systems with Applications, 2009, 36(2) : 2645-2650.
  • 7Waldemark K, Lindblad T, Beranovi6 V, et al. Patterns fromthe sky: satellite image analysis using pulse coupled neural networks for pre-processing, segmentation and edge detection [ J ]. Pattern recognition letters, 2000, 21 (3) : 227-237.
  • 8王海玲,范影乐,陈可,沈学丽,李轶.基于FHN神经元随机共振的低剂量肺部CT图像增强[J].航天医学与医学工程,2012,25(2):121-125. 被引量:8
  • 9Liu B, Li P. Li Y, et al. Visual receptive fielc1 structure of cortical inhibitory neurons revealed by two-photon imaging guided recording[J]. The Journal of Neuroscicnce, 2009, 29 (34) : 10520-10532.
  • 10Sadagopan S, Ferster D. Feedforward origins of response vari- ability underlying contrast invariant orientation tuning in cat visual cortex[J]. Neuron, 2012, 74(5): 911-923.

二级参考文献9

  • 1Tomoaki I,Sukru ME,Tsutomu A. Multiphasic contrast-enhanced multidetector-row CT of liver:Contrast-enhancement theory and practical scan protocol with a combination of fixed injection duration and patients' body-weight-tailored dose of contrast material[J].European Journal of Radiology,2006,(02):165-176.doi:10.1016/j.ejrad.2005.11.037.
  • 2Zhang GD,Yan PY,Zhao H. A contrast enhancement algorithm for low-dose CT images based on local histogram equalization[A].Shanghai:IEEE Press,2008.2462-2465.
  • 3Benzi R,Sutera A,Vulpiani A. The mechanism of stochastic resonance[J].Journal of Physics A:Mathematical and General,1981,(11):453-457.doi:10.1088/0305-4470/14/11/006.
  • 4Eltoukhy MM,Faye I,Samir BB. Breast cancer diagnosis in digital mammogram using multiscale curvelet transform[J].Computerized Medical Imaging and Graphics,2010,(04):269-276.doi:10.1016/j.compmedimag.2009.11.002.
  • 5Aihara T,Kitajo K,Nozaki D. Internal noise determines external stochastic resonance in visual perception[J].Vision Research,2008,(14):1569-1573.doi:10.1016/j.visres.2008.04.022.
  • 6Sasaki H,Sakane S,Ishida T. Subthreshold noise facilitates the detection and discrimination of visual signals[J].Neuroscience Letters,2008,(02):255-258.doi:10.1016/j.neulet.2008.03.036.
  • 7Biton Y,Rabinovitch A,Aviram I. Two mechanisms of spiral-pair-source creation in excitable media[J].Physics Letters A,2009,(20):1762-1767.doi:10.1016/j.physleta.2009.03.030.
  • 8Singh S,Bovis K. An evaluation of contrast enhancement techniques for mammography breast masses[J].IEEE Transactions on Information Technology in Biomedicine,2005,(01):109-119.doi:10.1109/TITB.2004.837851.
  • 9陈可,范影乐,李轶.双稳态随机共振机制及其在图像复原中的应用[J].中国图象图形学报,2011,16(7):1170-1177. 被引量:6

共引文献7

同被引文献31

  • 1沈嘉琳,汪源源,王涌,王怡.基于灰度阈值分割和动态规划的超声图像乳腺肿瘤边缘提取[J].航天医学与医学工程,2005,18(4):281-286. 被引量:10
  • 2桑农,唐奇伶,张天序.基于初级视皮层抑制的轮廓检测方法[J].红外与毫米波学报,2007,26(1):47-51. 被引量:30
  • 3杨柳,汪天富,林江莉,李德玉.基于平均曲率流活动轮廓模型的超声医学图像边缘提取[J].航天医学与医学工程,2007,20(3):205-208. 被引量:2
  • 4Maini R, Aggarwal H. Study and comparison of various imageedge detection techniques [ J ]. International Journal of ImageProcessing ( IJIP),2009,3(1): 1 -11.
  • 5Sadagopan S, Ferster D. Feedforward origins of responsevariability underlying contrast invariant orientation tuning in catvisual cortex [ J]. Neuron, 2012,74(5 ) : 911 -923.
  • 6Kerr D, Coleman S, Mcginnity M, et al. Biologically inspirededge detection [ C ] //2011 11th International Conference onIntelligent Systems Design and Applications (ISDA). Cordoba:IEEE,2011: 802 -807.
  • 7Petkov N, Subramanian E. Motion detection, noise reduction,texture suppression,and contour enhancement by spatiotemporalGabor filters with surround inhibition [ J ]. BiologicalCybernetics, 2007,97(5 -6) : 423 -439.
  • 8Wei Hui,Lang Bo, Zuo Qingsong. Contour detection model withmulti-scale integration based on non-classical receptive field [ J].Neurocomputing,2013 , 103(0) : 247 - 262.
  • 9Yang Kaifu, Gao Shaobing, Li Chaoyi, et al. Efficient colorboundary detection with color-opponent mechanisms [ C ] //20131EEE Conference on Computer Vision and Pattern Recognition(CVPR). Portland: IEEE, 2013: 2810 -2817.
  • 10Yang Kaifu, Li Chaoyi, Li Yongjie. Multi-feature based surroundinhibition improves contour detection in natural images [J].IEEE Transactions on Image Processing, 2014,23( 12) : 5020 -5032.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部