摘要
文中讨论了正则单叶非零函数f(z)=a0+a1z+…anzn+…(a0≠0)在单位圆|z|<1内的系数估计问题,当n=2和n=3时,运用极值原理和有界正则函数的性质对|a0+a1+a2|和|a0+a1+a2+a3|的上界进行估计,得到其上界的估计式,进而推广了Krzyz猜测。
This paper studied the estimation problem of the coefficients for the univalent bounded non-vanishing functions f(z) =a0 + a1z + …anzn + … (a0 ≠ 0) in the unit circle | z | 〈 1.When n =2 and n =3,this paper,uses the maximum principle and the properties of the bounded regular function,estimates the upper bound of | a0 + a1 + a2 | and | a0 +a1 + a2 + a3 |,and obtains their upper bound estimator.This method can be extended to the Krzyz conjecture. Keywords:univalent bounded non-vanishing functions; Landau problem; Krzyz conjecture
出处
《江南大学学报(自然科学版)》
CAS
2014年第2期248-252,共5页
Joural of Jiangnan University (Natural Science Edition)