期刊文献+

自适应谱峭度滤波方法及其振动信号检测应用 被引量:8

Adaptive Spectral Kurtosis Filtering and Its Application for Detection of Vibration Signal
下载PDF
导出
摘要 谱峭度滤波方法是一种在强背景噪声下也能有效提取振动信号中瞬态成分的方法。笔者针对谱峭度滤波方法中窗宽的自适应选择问题,提出一种自适应谱峭度滤波方法。该方法将小波相关滤波提取的振动信号特征频率作为Morlet小波滤波窗口中心频率,并按最大谱峭度原则自适应选择滤波小波窗口宽度,以确定最优带宽Morlet小波窗。通过强背景噪声下的瞬态成分的提取验证该方法的有效性,并与窗口融合自适应谱峭度滤波方法进行比较。针对轴承故障振动信号检测,应用该方法提取反映轴承故障的冲击响应成分,说明该方法能够实现轴承故障振动特征信号的提取。 Spectral kurtosis is an effective tool for extracting the impulse response from vibration signals with strong background noise.This paper presents an adaptive spectral kurtosis filtering method to overcome the problem of window width adaptive selection.The center frequency of the filtering wavelet window is obtained using wavelet correlation filtering,and the adaptive selection of optimal Morlet wavelet window width can be obtained based on the principle of the maximum spectral kurtosis.The effectiveness of the proposed method is verified through the transient extraction form strong background noise and further proved by comparison with adaptive spectral kurtosis based on merging windows.For the bearing fault vibration signal detection,the proposed method is applied in the extraction of the transients caused by the fault,thus proving the method′s effectiveness in extracting the feature signal for bearing fault detection.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2014年第2期212-217,392,共6页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(51375322) 西安交通大学机械制造系统国家重点实验室资助项目(sklms2011006)
关键词 谱峭度 瞬态成分 MORLET小波 相关滤波 spectral kurtosis transients Morlet wavelet correlation filtering
  • 相关文献

参考文献14

  • 1Dwyer R.Detection of non-Gaussian signals by fre-quency domain kurtosis estimation[C]//IEEE Interna-tional Conference on Acoustics,Speech,and Signal Processing.Boston:IEEE International Conference on ICASSP,1983:607-610.
  • 2Vrabie V,Granjon P,Serviere C.Spectral kurtosis:from definition to application[C]//Proceedings of the 6th IEEE International Workshop on Nonlinear Signal and Image Processing.Italy:IEEE International Workshop on EURASIP,2003:8-11.
  • 3Antoni J.The spectral kurtosis:a useful tool for char-acterising non-stationary signals[J].Mechanical Sys terns and Signal Processing,2006,20(2):282-307.
  • 4Antoni J,Randall R B.The spectral kurtosis:applica-tion to the vibratory surveillance and diagnostics of ro tating machines[J].Mechanical Systems and Signal Processing,2006,20(2):308-331.
  • 5Vrabie V,Granjon P.Harmonic component character-ization using spectral kurtosis [C]//12th European Signal Processing Conference.Austria.European Sig nal Processing Conference,2004:7-10.
  • 6Antoni J.Fast computation of the kurtogram for the detection of transient faults[J].Mechanical Systems and Signal Processing,2007,21(1):108-124.
  • 7Zhang Yongxiang,Randall R B.Rolling element bear-ing fault diagnosis based on the combination of genetic algorithms and fast kurtogram[J].Mechanical Sys-tems and Signal Processing,2009,23(5):1509-1517.
  • 8从飞云,陈进,董广明.基于谱峭度和AR模型的滚动轴承故障诊断[J].振动.测试与诊断,2012,32(4):538-541. 被引量:26
  • 9石林锁,张亚洲,米文鹏.基于WVD的谱峭度法在轴承故障诊断中的应用[J].振动.测试与诊断,2011,31(1):27-31. 被引量:33
  • 10石林锁.滚动轴承故障检测的改进包络分析法[J].轴承,2006(2):36-39. 被引量:17

二级参考文献46

  • 1石林锁.滚动轴承故障检测的改进包络分析法[J].轴承,2006(2):36-39. 被引量:17
  • 2Strang G, Nguyen T. Wavelet and Filter Banks[M]. Wellesley-Cambridge Press, 1996.
  • 3Freudinger L C, Lind R, Brenner M J. Correlation filtering of modal dynamics using the Laplace wavelet [A]. Proe. of 16th International Modal Analysis Conference[C]. Santa Barbara, California, 1998: 868- 877.
  • 4Zi Yanyang, Chen Xuefeng, He Zhengjia, et al. Vibration based modal parameters identification and wear fault diagnosis using Laplace wavelet [J]. Key Engineering Materials, 2005, 293-294: 183-190.
  • 5Li Hongliang, Wang Sunfan. Impulse Response Feature Extraction Based on Genetic Algorithm with Correlation Filtering [A]. ISCIT [C]. 2005 (1): 594- 598.
  • 6Dong H B, Chen X F, Li B, et al. Rotor crack detection based on high-precision modal parameter identification method and wavelet finite element model [J]. Mechanical Systems and Signal Processing, 2009, 23: 869-883.
  • 7Dwyer R F.Detection of non-Gaussian signals by frequency domain kurtosis estimation[C] //Acoustic,Speech and Signal Processing.Boston:IEEE International Conference on ICASSP,1983:607-610.
  • 8Vrabie V,Granjon P,Serviere C.Spectral kurtosis:from definition tO application[M].Grado,Italy:IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing,2003.
  • 9Vrabie V,Granjon P,Maroni C,et al.Application of spectral kurtosis to bearing fault detection in motors[C] //5th International Conference on Acoustical and Vibratory Surveillance Methods and Diagnostic Techniques.France:HAL-CCSd-CNRS,2004.
  • 10Antoni J,Randall R B.The spectral kurtosis:a useful tool for characterising nonstationary signals[J].Mechanical Systems and Signal Processing,2006,20(2):282-307.

共引文献117

同被引文献114

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部