期刊文献+

基于蚁群算法的铣削力信号特征选择方法 被引量:4

Feature Selection Method on Milling Force Signal Based on Ant Colony Algorithm
下载PDF
导出
摘要 为有效地进行刀具状态模式识别,以端面铣刀为研究对象,采用蚁群算法对铣削力信号进行研究分析,提出一种可用于刀具状态识别的特征选择方法。该方法将特征选择过程转化成蚁群算法中蚂蚁寻找最优路径的过程,给出了转移概率公式,并运用Fisher标准判别率作为启发信息,同时将每次搜索得出的最优特征子集输入BP神经网络进行模式识别,得到的正确率整合进信息素更新策略。另外,改进了蚁群算法参数选择方法。实验结果表明,该方法可以高效地进行特征优化选择,进而使模式识别正确率较未经特征选择时得到显著提高。 In order to improve cutting tool condition pattern recognition,the face milling cutter is taken as an object and the feature of the milling force signal is analyzed using an ant colony algorithm.A method for feature selection that can be used in pattern recognition of tool wear is proposed.The method transforms the feature selection into a search for the best routes in ant colony algorithm,and the formula for this selection route is given.The fisher criterion is adopted as heuristic information.At the same time,the optimal feature subset of the current iteration cycle is put onto a BP neural network for Pattern Recognition. The precision of classification is obtained and used in the policy of pheromone update.Moreover,the method of parameter selection on the colony algorithm is improved.The experimental results show that this scheme can efficiently obtain the optimal feature subset.The accuracy is significantly higher than that obtained without feature selection.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2014年第2期372-378,403,共7页 Journal of Vibration,Measurement & Diagnosis
基金 四川省科技厅科技支撑计划资助项目(2013gz0139)
关键词 刀具 特征选择 模式识别 蚁群算法 参数 cutting tool feature selection pattern recognition ant colony algorithm parameter
  • 相关文献

参考文献16

  • 1康晶,冯长建,胡红英.刀具磨损监测及破损模式的识别[J].振动.测试与诊断,2009,29(1):5-9. 被引量:7
  • 2胡金海,谢寿生,骆广琦,李应红,杨帆.基于核函数Fisher鉴别分析的特征提取方法[J].振动.测试与诊断,2008,28(4):322-326. 被引量:8
  • 3Silva R G,Baker K J,Wilcox S J,et al.The adaptability of a tool wear monitoring system under changing cut-ting conditions [J].Mechanical Systems and Signal Processing,2000,14(2):287-298.
  • 4Dash M,Liu Huan.Feature selection for classification [J].Intelligent Data Analysis,1997,1(3):131-156.
  • 5Chakraborty B.Genetic algorithm with fuzzy fitness function for feature selection[C]//Proceedings of the 2002 IEEE International Symposium on Industrial E-lectronics.Piscataway N J:IEEE Conference Publica-tions,2002:315-319.
  • 6Gomez J F,Khodr H M,De Oliveira P M,et al.Ant colony system algorithm for the planning of primary distribution circuits [J].IEEE Transactions on Power Systems,2004,19(2):996-1004.
  • 7Gambardella L M,Taillard E,Agazz G.MACS-VRPTW:a multiple ant colony system for vehicle rou-ting problems with time windows[R]//Technical re-port IDSIA No.IDSIA-06-09.Lugano,Switzerland:McGraw-Hill Ltd,1999:63-76.
  • 8Hussein O H,Saadawi T N,Lee M J.Probability rou-ting algorithm for mobile ad hoc networks resources management[J].IEEE Journal on Selected Areas in Communications,2005,23(12):2248-2259.
  • 9王娟,慈林林,姚康泽.特征选择方法综述[J].计算机工程与科学,2005,27(12):68-71. 被引量:64
  • 10Dorigo M,Maniezzo V,Colorni A.Optimization by a colony of cooperaing agents[J].IEEE Transactions on Systems Man and Cybernetics,1996,26(1):29-41.

二级参考文献65

  • 1钱忠良,王文军.不变矩目标特征描述误差分析和基于上层建筑不变矩的舰船识别[J].电子测量与仪器学报,1994,8(3):23-31. 被引量:4
  • 2高宏力,许明恒,傅攀,杜全兴.基于动态树理论的刀具磨损监测技术[J].机械工程学报,2006,42(7):227-230. 被引量:24
  • 3Guo Yuefei, Shu Tingting, Yang Lingyu, et al. Feature extraction method based on the generalized Fisher Discriminant criterion and face recognition[J]. Pattern Analysis & Application, 2001,4(1) : 61-66.
  • 4Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computation, 1998,10(5):1 299-1 319.
  • 5Roth V,Steinhage V. Nonlinear discriminant analysis using kernel function[C]//Advances in Neural Information Proceeding Systems 12. MA: MIT Press, 2000:568-574.
  • 6Mika S, Ratsch G, Weston I, et al. Fisher diseriminant analysis with kernels [C] // Proceedings of the 1999 9th IEEE Workshop on Neural Networks for Signal Processing. Madison, WI, USA: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ, USA, 1999: 41-48.
  • 7Bezdek J C, Pal N R. Some new index of cluster validity[J]. IEEE Trans. SMC, 1998,28(3) : 301-315.
  • 8Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines[J]. IEEE Trans. Neural Netw. , 2002,13(2) :415-425.
  • 9Kang Jing, Kang Ni, Feng Changjian, et al. Research on tool failure prediction and wear monitoring based on HMM pattern recognition theory[C]//Proceedings of IEEE-ICWAPR2007, 2007. Beijing: IEEE SMC Society,2007:1 167-1 172.
  • 10Ertunc H M, Loparo K A, Ozdernir E, et al. Real time monitoring of tool wear using multiple modeling method [C]//Proceedings of IEEE IEMDC. USA, MA, Cambridge : [s. n],2001 : 687-691.

共引文献169

同被引文献30

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部