期刊文献+

基于替代数据检测的音频信号非线性分析 被引量:3

Nonlinear Analysis of Audio Signals Using Surrogate Data Test
下载PDF
导出
摘要 针对轻微含噪的音频信号,本文提出了一种基于替代数据检测的非线性分析方法。该方法首先假设音频信号来自于线性高斯随机过程,并利用基于随机相位的傅里叶变换法生成多组替代数据,然后分别计算原始数据和替代数据的样本峰度,最终根据假设检验方法判断原始音频中是否包含非线性成分。实验测试中分别对不同信噪比下音调型器乐演奏信号进行了分析。结果表明,相比于传统基于最大Lyapunov指数的非线性分析方法,本文所提方法在含噪情况下能更准确地检测到音频信号的非线性成分。 A kind of nonlinear analysis method based on the surrogate data test for slightly nois- y audio signals is presented. According to the hypothesis that audio signals can be modeled as a linear Gaussian stochastic process, several groups of surrogate data are generated by means of Fourier transform with random phase. The kurtosis measures are respectively calculated for the original audio and surrogate data. Hypothesis test is utilized to detect the nonlinear compo- nents in the original audio. In experiments, the audio signals of harmonic instruments were an- alyzed in the condition of different signal-to-noise ratios. The results show that the proposed method achieves the better performance for detecting the nonlinear components of audio signalsthan the nonlinear analysis based on the largest Lyapunov exponent in the noisy conditions.
作者 刘鑫 鲍长春
出处 《数据采集与处理》 CSCD 北大核心 2014年第2期243-247,共5页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61072089)资助项目
关键词 音频信号 非线性分析 替代数据法 假设检验 audio signals nonlinear analysis surrogate data hypothesis test
  • 相关文献

参考文献16

  • 1Barney A, Shadle C, Davies P. Fluid flow in a dy model of the vocal folds and tract: part 1& 2[J]. J Acoust Soc Amer, 1999, 105 (1) : 444-466.
  • 2Maragos P, Dimakis A, Kokkinos I. Some advances in nonlinear speech modeling using modulations, fractals, and chaos[C]//14th International Confer- ence on Digital Signal Processing. Greece: IEEE Press, 2002: 325-332.
  • 3Kantz H, Schreiber T. Nonlinear time series analysis [M]. UK: Cambridge University Press, 1997.
  • 4郭兴明,李传鹏,卢德林.定量递归分析和近似熵在心音分类识别中的应用[J].数据采集与处理,2013,28(5):559-564. 被引量:10
  • 5Kokkinos I, Maragos P. Nonlinear speech analysis u- sing models for chaotic systems [J]. IEEE Trans Speech Audio Process, 2005, 13(6) : 1098-1109.
  • 6Zhang Liyan, Bao Changchun, Liu Xin, et al. Audio classification algorithm based on nonlinear character- istics analysis[C]//3rd Asia-Pacific Signal and Infor- mation Processing Association Annual Summit and Conference. Xilan, China: APSIPA, 2011: 214- 217.
  • 7Rui Rui, Bao Changchun. Musical instrument classi- fication based on nonlinear recurrence analysis and supervised learning[J]. Radio Engineering, 2013, 22 (1), 60-67.
  • 8Pitsikalis V, Kokkinos I, Maragos P. Nonlinear a- nalysis of speech signals: generalized dimensions and lyapunov exponents [C]//8th European Conference on Speech Communication and Technology. Geneva, Switzerland: ISCA, 2003: 1-4.
  • 9Prasad S, Srinivasan S, Pannuri M, et al. Nonlinear dynamical invariants for speech recognition[C]//9th International Conference on Spoken Language Pro- cessing. Pittsburgh, USA: ISCA, 2006: 2518-2521.
  • 10Zhang Xingtao, Bao Changchun, Liu Xin, et al. Au- dio bandwidth extension based on maximum lya- punov prediction[C]//3rd Asia-Pacific Signal and In- formation Processing Association Annual Summit and Conference. Xi~an, China: APSIPA, 2011:849- 852.

二级参考文献11

共引文献9

同被引文献28

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部