期刊文献+

单倍体异基因淋巴细胞输注在小鼠移植物抗宿主病和移植物抗肿瘤效应中的意义 被引量:4

Significance of haploidentical allogeneic lymphocytes infusion in induction of graft versus host disease andgraft versus tumor in mice
原文传递
导出
摘要 目的建立小鼠免疫耐受模型,探讨单倍体异基因淋巴细胞输注在小鼠移植物抗宿主病(GVHD)和移植物抗肿瘤(GVT)效应中的意义。方法64只BALB/C雌性小鼠按随机数字表法分为4组,每组16只。对照组:实验第4天接种肿瘤细胞(小鼠大肠癌CT26细胞株配制成1×10^7/mL的瘤细胞悬液,接种到雌性小鼠右腋皮下)后不予任何特殊处理;化疗组:实验第4天接种肿瘤细胞,第7天开始化疗;供体淋巴细胞输注(DLI)组:实验开始时进行预处理,第4天接种肿瘤细胞,第13、15、17天输注单倍体异基因淋巴细胞(雄性BALB/C小鼠制备的脾淋巴细胞);化疗+DLI组:实验开始时进行预处理,第4天接种肿瘤细胞,第7天开始化疗,第13、15、17天输注单倍体异基因淋巴细胞。预处理方案为输注单倍体异基因淋巴细胞+环磷酰胺+输注单倍体异基因淋巴细胞。化疗方案为小鼠接种肿瘤细胞后第3天给予环磷酰胺腹腔化疗。每日观察各组小鼠临床GVHD的指标,并给予临床评分。观察荷瘤鼠肿瘤生长情况,计算接种成功后首日到小鼠死亡的时间和肿瘤质量,计算抑瘤率。应用流式细胞仪检测各组小鼠外周静脉血中T细胞数量,接种后15d各组处死3只小鼠取瘤体制作成观察切片,HE染色后光镜观察。多组比较采用方差分析,组间比较采用LSD—t检验。结果化疗+DLI组的小鼠GVHD临床表现轻于其他组小鼠。对照组、化疗组、DLI组、化疗+DLI组GVHD评分分别为(2.3±0.6)分、(1.5±1.1)分、(6.7±0.9)分、(3.4±0.5)分,4组比较,差异有统计学意义(F=148.68,P〈0.05)。4组小鼠全部接种CT26细胞成功。对照组、化疗组、DLI组、化疗+DLI组小鼠肿瘤质量分别为(3.40±0.20)g、(0.80±0.10)g、(2.20±0.20)g、(0.50±0.30)g,4组比较,差异有统计学意义(F=149.17,P〈0.05);4组小鼠抑瘤率分别为0、77%±9%、35%±3%、85%±44%;4组小鼠CD3’分别为52.3%±2.9%、44.8%±3.1%、62.9%±3.5%、65.9%±3.3%,4组比较,差异有统计学意义(F:28.04,P〈0.05);4组小鼠CD3+CD4+分别为32.1%±2.6%、27.1%±1.1%、42.6%±1.8%、41.7%±2.4%,4组比较,差异有统计学意义(F=40.29,P〈0.05);4组小鼠CD3+CD8+分别为22.7%±2.2%、20.7%±1.8%、26.7%±0.8%、26.1%±0.7%,4组比较,差异有统计学意义(F=10.74,P〈0.05);4组小鼠CD3+CD+CD25+分别为8.7%±0.6%、6.6%±0.6%、11.2%±0.4%、13.3%±0.7%,4组比较,差异有统计学意义(F=82.88,P〈0.05)。4组小鼠的肿瘤组织均有不同程度的坏死、出血,其中DLI组和化疗+DLI组肿瘤组织大片坏死,瘤细胞变小,间质内有大量炎性细胞浸润,化疗+DLI组还可见大量增生的淋巴滤泡。对照组、化疗组、DLI组、化疗+DLI组小鼠生存时间分别为(16.8±2.5)d、(26.3±2.9)d、(23.4±2.5)d、(33.7±4.6)d,4组比较,差异有统计学意义(F=46.45,P〈0.05)。结论(1)预处理方案可以诱导小鼠的特异性免疫耐受。(2)单倍体异基因淋巴细胞输注与化疗具有协同作用,联合应用可以抑制小鼠皮下移植瘤瘤体的生长以及延长小鼠的生存时间。(3)化疗可降低供体淋巴细胞输注后诱发的GVHD效应并且提高了GVT效果。(4)CD3+CIN+CD25+T淋巴细胞在降低GVHD反应中起着重要的作用。 Objective To establish the mice model of immunological tolerance, and investigate the sig- nificance of haploidentical allogeneic lymphocytes infusion in induction of graft versus host disease and graft versus tumor in mice. Methods Sixty-four BALB/C female mice were randomly divided into 4 groups with 16 mice in each group. Control group: no special treatment was given after inoculation of tumor cells at the 4th day ( CT26 eolorectal cancer cell lines with mixture of 1 x 107/mL tumor cells suspension was inoculated to the right subcuta- neous axillary of mice) ; Chemotherapy group: chemotherapy was applied at the 7th day after inoculation of tumor cells at the 4th day; DLI group: tumor cells were inoculated at the 4th day, and then haploid donor cells were infused at the 13th, 15th and 17th day; Chemotherapy + DLI group: tumor cells were inoculated at the 4th day, chemotherapy was applied at the 7th day, and haploid donor cells were infused at the 13th, 15th and 17th day. The pretreatment scheme included haploidentical allogeneic lymphocyte + ring ling amide + haploidentical allogeneic lymphocyte, and the chemotherapy regimen included peritoneal infusion of cyclophosphamide at the 3rd day after inoculation of tumor cells in mice. The time from the first day after vaccination to the clay of death of mice and the mass of the tumors were detected to calculate the tumor inhibition rate. The clinical indexes of GVHD were observed, and clinical evaluation was made. The numbers of T lymphocytes in peripheral blood were detected by flow cytometry. Three mice were sacrificed in each group at the 15th day to make the tissue specimens, and they were observed under light microscope after HE staining. All data were analyzed using the analysis of variance or LSD-t test. Results The symptoms of GVHD of mice in the chemotherapy + DLI group were milder than those in other groups. The GVHD scores of the control group, chemotherapy group and the chemotherapy + DLI group were 2.3 ± 0.6, 1.5 ± 1.1,6.7 ± 0.9 and 3.4± 0.5, respectively, with significant difference between the 4 groups ( F = 148.68, P 〈 0.05 ). The tumor masses of the control group, chemotherapy group, DLI group and the chemotherapy + DLI group were (3.40 ± 0.20) g, (0.80 ± 0. 10) g, ( 2.20 ± 0.20) g and (0.50 ± 0.30) g, respectively, with significant difference between the 4 groups (F = 149. 17, P 〈 0.05 ). The tumor inhibition rates of the control group, chemotherapy group, DLI group and the chemotherapy + DLI group were 0, 77%± 9% , 35%± 3% , 85% ±44%. The levels of CD3+ of the control group, chemotherapy group, DLI group and the chemotherapy + DLI group were 52.3% ± 2.9% , 44.8% ± 3. 1%, 62.9% ± 3.5% , 65.9% ±3.3%, respectively, with significant difference between the 4 groups (F = 28.04, P 〈 0.05). The levels of CD3 ~ CD4 ~ of the control group, chemo- therapy group, DLI group and the chemotherapy + DLI group were 32. 1% ±2.6% , 27. 1% ± 1. 1% , 42.6% ± 1.8% and 41.7% ± 2.4% , respectively, with significant difference between the 4 groups ( F = 40. 29, P 〈 0.05 ). The levels of CD3 ~ CD8 + of the control group, chemotherapy group, DLI group and the chemotherapy + DLI group were 22.7% ± 2.2%, 20.7% ± 1.8%, 26.7% ± 0.8 % and 26.1% ±0.7% , respectively, with significant differ- ence between the 4 groups ( F = 10. 74, P 〈 0.05). The levels of CD3 + CD4 + CD25 + of the control group, chemo- therapy group, DLI group and the chemotherapy + DLI group were 8.7% ± 0.6%, 6.6%± 0.6%, 11.2% ± 0.4% and 13.3% ± 0.7% , respectively, with significant difference between the 4 groups ( F = 82. 88, P 〈 0.05 ). Necrosis and bleeding of the tumor tissues were observed in all the 4 groups. Necrosis, shrinking of the tumor cells, inflammatory infiltration were observed in the DLI group and the chemotherapy + DLI group. Proliferation of lymphoid follicles was observed in the chemotherapy + DLI group. The survival time of mice in the control group, chemotherapy group, DLI group, chemotherapy + DLI group were ( 16.8 + 2.5) days, (26.3 _+ 2.9) days, (23.4± 2.5 ) days and ( 33.7 ±4.6) days, respectively, with significant difference between the 4 groups ( F = 46.45, P 〈 0.05). Conclusions ( 1 ) Pretreatment can induce specific immune tolerance in mice. (2) Haploidentical allo- geneic lymphocyte infusion and chemotherapy have synergistic effects, joint application of haploidentical allogeneic lymphocyte infusion and chemotherapy can inhibit the proliferation of tumor cells and prolong the survival time of mice. (3) Chemotherapy can reduce the GVHD of haploidentical allogeneic lymphocyte infusion and enhance the GVT. (4) CD3 + CD4 + CD25 + T lymphocytes play important roles in decreasing GVHD.
出处 《中华消化外科杂志》 CAS CSCD 北大核心 2014年第5期369-375,共7页 Chinese Journal of Digestive Surgery
基金 国家自然科学基金重点项目(30972898) 黑龙江省自然科学基金(D201218)
关键词 肿瘤 移植物抗宿主病 淋巴细胞输注 移植物抗肿瘤效应 Neoplasms Graft versus host disease Lymphocyte incusion Graft versus tumor
  • 相关文献

参考文献18

  • 1郑晓丽,章卫平,杨建民,宋献民,周虹,高磊,包晓辰,王健民.异基因造血干细胞移植后共刺激分子LIGHT/HVEM的表达与GVHD的关系[J].中华器官移植杂志,2010(2):89-92. 被引量:3
  • 2Marmont AM, Horowitz MM, Gale RP, et al. T-cell depletion of HI,A-identical transplants in leukemia[ J]. Blood, 1991,78 ( 8 ) : 2120-2130.
  • 3赵金河,陈字,谢彦晖.过继性同种异基因淋巴细胞植入小鼠模型的建立[J].复旦学报(医学版),2008,35(1):53-57. 被引量:2
  • 4Sistigu A, Viaud S, Chaput N, et al. hnmunomodulatory effects of cyclophosphamide and implementations for vaccine design [ J ]. Semin Immunopathol,2011,33(4) :369-383.
  • 5Shukla S, Mehta A, John J, et al. Immunomodulatory activities of the ethanolic extract of Caesalpinia bonducella seeds[J]. J Ethno- pharmaco1,2009,125 ( 2 ) :252-256.
  • 6Jin K, Teng L, Shen Y, et al. Patient-derived human tumour tis- sue xenografts in immunodeficient mice: a systematic review [ J ]. Clin Transl Onco1,2010,12 ( 7 ) :473-480.
  • 7刘家望,谢蜀生.供体脾脏中的T细胞在移植耐受诱导中的作用[J].免疫学杂志,2002,18(6):407-410. 被引量:2
  • 8Imataki O, Ohnishi H, Ohbayashi Y, et al. Fludarabine and mel- phalan conditioning with tacrolimus as GVHD prophylaxis for allo- geneic stem cell transplant recipients is an effective reduced-inten- sity combination regimen compared to the conventional regimen [ J ]. Int J Clin Onco1,2009,14 (3) : 197-201.
  • 9Luznik L, Bolaos-Meade J, Zahurak M, et al. High-dose cyclo- phosphamide for graft-versus-host disease prevention [ J ]. Curr Opin Hematol,2010,17(6) :493-499.
  • 10Luznik L, Zahurak M, Chen AR, et al. High-dose cyclophospha- mide as single-agent, short-course prophylaxis of graft-versus-host disease[ J]. Blood,2010,115 (16) :3224-3230.

二级参考文献25

  • 1毛俊浩,吕志良,曾群力,阮红.白术多糖对小鼠淋巴细胞功能的调节[J].免疫学杂志,1996,12(4):233-236. 被引量:95
  • 2王惠军,刘波,金秀国,刘晓光.肺癌患者CD4^+CD25^+Treg的检测及临床意义[J].中国免疫学杂志,2007,23(1):42-43. 被引量:8
  • 3Granger SW, Richert S. LIGHT-HVEM signaling and the regulation of T cell-mediated immunity. Cytokine Growth Factor Rev, 2003, 14(3-4) : 289-296.
  • 4Croft M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat Rev Immunol, 2003, 3(8): 609-620.
  • 5Tamada K, Shimozaki K, Chapoval AI, et al. Modulation of T-cell-mediated immunity in tumor and graft-versus-host disease models through the LIGHT co-stimulatory pathway. Nat Med, 2000, 6(3):283-289.
  • 6Tamada K, Tamura H, Flies D, et al. Blockade of LIGHT/ LTbeta and CD40 signaling induces allospecific T cell anergy, preventing graft-versus-host disease. J Clin Invest, 2002, 109 (4) : 549-557.
  • 7Xu Y, Flies AS, Flies DB, et al. Selective targeting of the LIGHT-HVEM costimulatory system for the treatment of graft-versus-host disease. Blood, 2007, 1119(9): 4097-4104.
  • 8Brown GR, Lane GW, Whittington BJ. Disparate role of LIGHT in organ-specific donor T cells activation and effector molecules in MHC class Ⅱ disparate GVHD. J Clin Immunol, 2009 Oct 14. [Epub ahead of print].
  • 9June CH. Principles of adoptive T cell cancer therapy [J]. J Clin Invest, 2007, 117(5): 1 204-1 212.
  • 10Riddell SR, Bleakley M, Nishida T,et al. Adoptive transfer of allogeneie antigen-specific T cells [J]. Biol Blood Marrow Transplant, 2006, 12(1 Suppl 1): 9- 12.

共引文献15

同被引文献33

  • 1刘考,乔筱玲,张立峰.肝移植术后患者口腔护理方法的探讨[J].护理学杂志(外科版),2005,20(12):16-17. 被引量:5
  • 2危笑珍,张献玲,赖丹妮,黄火姐.肝移植术后移植物抗宿主病的护理[J].现代临床护理,2006,5(5):38-40. 被引量:2
  • 3Blazar BR,Murphy WJ,Abedi M.Advances in graft-versushost disease biology and therapy[J].Nat Rev Immunol,2012,12 (6):443-458.
  • 4Heimesaat MM,Nogai A,Bereswill S,et al.MyD88/TLR9 mediated immunopathology and gut microbiota dynamics in a novel murine model of intestinal graft-versus-host disease[J].Gut,2010,59(8):1079-1087.
  • 5Penack O,Holler E,van den Brink MR.Graft-versus-host disease:regulation by microbe-associated molecules and innate immune receptors[J].Blood,2010,115(10):1865-1872.
  • 6Brennan TV,Lin L,Huang X,et al.Heparan sulfate,an endogenous TLR4 agonist,promotes acute GVHD after allogeneic stem cell transplantation[J].Blood,2012,120(14):2899-2908.
  • 7Shin OS,Harris JB.Innate immunity and transplantation tolerance:the potential role of TLRs/NLRs in GVHD[J].Korean J Hematol,2011,46(2):69-79.
  • 8Cooke KR,Kobzik L,Martin TR,et al.An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation:I.The roles of minor H antigens and endotoxin[J].Blood,1996,88(8):3230-3239.
  • 9Zeiser R,Penack O,Holler E,et al.Danger signals activating innate immunity in graft-versus-host disease[J].J Mol Med,2011,89(9):833-845.
  • 10Roach JM,Racioppi L,Jones CD,et al.Phylogeny of Toll-like receptor signaling:adapting the innate response[J].Plos One,2013,8(1):e54156.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部