摘要
The materials innovation infrastructure in the materials genome initiative(MGI)consists of three major components:computational tools,experimental tools,and digital data.This article will review experimental tools for high-throughput,high spatial resolution measurements of several materials properties such as elastic modulus,thermal conductivity,specific heat capacity,and thermal expansion.Application of these tools on compositionvarying samples such as diffusion multiples can be used to quickly and efficiently obtain composition–phase–structure–property relationships for materials property database establishment.They can also be used in conjunction with theoretical modeling to find and explain unusual effects to improve the predictability of models.More micron scale resolution experimental tools are in development.These high-throughput tools will be an essential part of MGI.
The materials innovation infrastructure in the materials genome initiative (MGI) consists of three major components: computational tools, experimental tools, and digital data. This article will review experimental tools for high-throughput, high spatial resolution measurements of several materials properties such as elastic modulus, ther- mal conductivity, specific heat capacity, and thermal expansion. Application of these tools on composition- varying samples such as diffusion multiples can be used to quickly and efficiently obtain composition-phase-struc- ture-property relationships for materials property database establishment. They can also be used in conjunction with theoretical modeling to find and explain unusual effects to improve the predictability of models. More micron scale resolution experimental tools are in development. These high-throughput tools will be an essential part of MGI.
基金
mostly supported by National Science Foundation (NSF-DMR 0804833)