摘要
提出一种基于系统状态空间模型和归一化鲁棒最小均方根(NR-LMS,Normalized Robust Least Mean Square)理论的动力学结构参数辨识方法.利用系统的输入-输出数据建立其Hankel-Toeplitz模型,利用NR-LMS算法得到该模型参数的估计并求得系统的Hankel矩阵,对Hankel矩阵进行奇异值分解即可确定系统的阶次,进而确定系统状态空间模型的参数.仿真研究和实验结果表明,此方法可以准确、快速地提取出结构的参数,且抗噪能力较强.
A parameter identification method for structural dynamics system based on state space (SS)theory and normalized robust least mean square (NR-LMS) algorithm was proposed- By using this method,the identified dynamic system' s input and output data were used to build its Hankel-Toeplitz model based onthe state space theory- Iterative NR-LMS algorithm was applied to achieve parameters' estimates and Hankelmatrix for this model- Singular value decomposition (SVD) method to Hankel matrix was employed for quanti-fying the order of this dynamic system- Modal parameters and the state space model' s parameters also couldbe achieved from the Hankel matrix by certain calculation- A simulation of 3-DOF( degree of freedom) spring-mass system was employed to validate this method and experiment of identifying cantilever' s parameters wasstudied- The results demonstrate this method can identify structural parameters accurately and quickly-
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2014年第4期517-522,共6页
Journal of Beijing University of Aeronautics and Astronautics