期刊文献+

Stiefel流形上沿测地线搜索的自适应主(子)分量分析对偶学习算法

Adaptive dual learning algorithm for principal(minor) component analysis along geodesic on Stiefel manifold
原文传递
导出
摘要 神经网络在线提取子分量并不成功。基于Oja-Brockett-Xu并行神经网络拓扑结构,通过紧致Stiefel流形上加权Rayleigh商目标函数的优化框架,提出一个通过改变搜索方向并行提取主分量和子分量的自适应对偶学习算法。在正交矩阵群上采用基于右平移不变的Killing度量,通过在单位元处基于指数映射的测地线搜索,得到Stiefel流形上主(子)分量分析的对偶学习算法,提出的算法通过简单的变换步长参数符号,从主分量分析切换至子分量分析,权值矩阵在任意迭代时刻保持正交归一性。数值仿真验证了该算法的有效性。 Using the same topology as that of Oja-Brockett-Xu parallel neural network,a novel dual purpose adaptive algorithm for principal and minor component extraction was proposed by the optimization framework of a weighted Ray-leigh quotient on the compact Stiefel manifold. By taking the right translation invariant Killing metric on orthogonal ma-trix group and search along the geodesic emanating from identity by means of exponential map,a novel dual learning al-gorithm for principal and minor component analysis was proposed. The proposed algorithm could switch from PCA (Principal Component Analysis)to MCA(Minor Component Analysis)with a simple sign change of its stepsize pa-rameter. Moreover,orthonormality of the weight matrix was guaranteed at any iteration step. The effectiveness of the proposed algorithm was further verified in the section of numerical simulation.
出处 《山东大学学报(工学版)》 CAS 北大核心 2014年第2期1-5,11,共6页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(61002039 61202254) 中央高校基本科研业务经费资助项目(DC12010206 DC12010216) 辽宁省教育厅科研基金资助项目(0908-330006)
关键词 主分量分析 子分量分析 对偶学习 紧致Stiefel流形 principal component analysis minor component analysis dual learning compact Stiefel manifold
  • 相关文献

参考文献21

  • 1CICHOCKI A, AMARI S. Adaptive blind signal and im- age processing [ M ]. New York: John Wiley, 2003.
  • 2OJAE. A simplified neuron model as a principal compo- nent analyzer [J]. J Math Biology, 1982, 15 ( 3 ) : 267- 273.
  • 3OJA E, KARHUNEN J. On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix[J]. J Math Anal Appl, 1985, 106(1) : 69 -84.
  • 4XU L. Least mean square error recognition principal for self organizing neural nets [J]. Neural Networks, 1993, 6(5) :627-648.
  • 5BROCKETT R W. Dynamical system that sort lists, diag- onalize matrices, and solve linear programming problems [J]. Linear Algebra and Its Applications, 1991, 146 ( 1 ) :79-91.
  • 6EDELMAN A, ARIAS T, SMITH S. The geometry of algorithms with orthogonality constraints [J]. SIAM J Ma- trix Anal Appl, 1998, 20(2) :302-353.
  • 7AMARI S. Natural gradient works efficiently in learning [J]. Neural Computation, 1998, 10(2) :251-276.
  • 8CHEN T, AMARI S. Unified stabilization approach to principal and minor components extraction algorithms [J]. Neural Networks, 2001,4(10) :1377-1387.
  • 9欧阳缮,保铮,廖桂生.基于广义能量函数的快速自适应主分量提取[J].中国科学(E辑),2003,33(6):536-544. 被引量:3
  • 10NISHIMORI Y, AKAHO S. Learning algorithms utili- zing quasi-geodesic flows on the Stiefel manifold [ J]. Neurocomputing, 2005 (67) : 106-135.

二级参考文献14

  • 1[1]Oja E. A simplified neuron model as a principal component analyzer. J Math Biol, 1982, 15:267 ~ 273
  • 2[2]Oja E. Principal components, minor components, and linear neural networks. Neural Networks, 1992, 5:927 ~ 935
  • 3[3]Diamantaras K I, Kung S Y. Principal Component Networks-Theory and Applications. New York: Wiley, 1996
  • 4[4]Yang B. Projection approximation subspace tracking. IEEE Trans Signal Processing, 1995, 43(1): 95 ~ 107
  • 5[5]Golub G H, Van Loan C F. Matrix Computations. 2nd edition. MD: Johns Hopkins University Press, 1989
  • 6[6]Sanger T D. Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks, 1989, 2:459 ~ 473
  • 7[7]Xu L. Least mean square error reconstruction principle for self-organizing neural-nets. Neural Networks, 1993, 6:627 ~ 648
  • 8[8]Oja E, Ogawa H, Wangviwattana J. Principal component analysis by homogeneous neural networks, part Ⅰ: The weighted subspace criterion. IEICE, Trans Information and System, 1992, E75-D(3): 366 ~ 375
  • 9[9]Brockett R W. Dynamical system that sort lists, diagonalize matrices, and solve linear programming problems. Linear Algebra and Its Applications, 1991, 146(1): 79~91
  • 10[10]Chatterjee C, Roychowdhury V, Chong E. On relative convergence properties of principal component analysis algorithms. EEE Trans Neural Networks, 1998, 9(2): 319 ~ 329

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部