摘要
设G是一个顶点集为V(G),最小度为δ(G),独立数为α(G)的图,k≥2是整数。图G的支撑子图F称作是图G的分数k-因子,如果对于每一个x∈V(F)都有dh G(x)=k。如果对于图G的每条边e,图G都有一个分数k-因子包含它而且同时有一个分数k-因子不包含它,则称图G为分数k一致图。证明了如果δ(G)≥k+2,且α(G)≤4k(δ-k-1)/(k+1)2,则图G是一个分数k一致图。
Let G be a graph with vertex set V( G) , minimum degreeδ( G) and independent numberα( G) .Let k≥2 be an integer.A spanning subgraph F of G is called a fractional k-factor if dhG(x) =k for every x∈V(F).A graph G is called a fractional k-uniform graph if for each edge of G, there is a fractional k-factor containing it and another one ex-cluding it.In this paper, we prove that if δ(G)≥k+2 and α(G)≤4k(δ-k-1)(k+1)2 , then G is a fractional k-uniform graph.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2014年第4期41-43,共3页
Journal of Shandong University(Natural Science)
基金
山东省自然科学基金资助项目(ZR2013AM001)
关键词
简单图
独立数
分数因子
最小度
分数一致图
simple graph
independent number
fractional factor
minimum degree
fractional uniform graph