期刊文献+

ON COLEMAN OUTER AUTOMORPHISM GROUPS OF FINITE GROUPS

ON COLEMAN OUTER AUTOMORPHISM GROUPS OF FINITE GROUPS
下载PDF
导出
摘要 Let G be a finite group and Outcoz(G) the Coleman outer automorphism group of G(for the definition, see below). The question whether Outcol(G) is a p′-group naturally arises from the study of the normalizer problem for integral group rings, where p is a prime. In this article, some sufficient conditions for OutCol(G) to be a p'-group are obtained. Our results generalize some well-known theorems. Let G be a finite group and Outcoz(G) the Coleman outer automorphism group of G(for the definition, see below). The question whether Outcol(G) is a p′-group naturally arises from the study of the normalizer problem for integral group rings, where p is a prime. In this article, some sufficient conditions for OutCol(G) to be a p'-group are obtained. Our results generalize some well-known theorems.
机构地区 School of Mathematics
出处 《Acta Mathematica Scientia》 SCIE CSCD 2014年第3期790-796,共7页 数学物理学报(B辑英文版)
基金 Supported by NSF of China(11171169) the B.S.Foundation of Shandong Province(BS2012SF003)
关键词 Coleman automorphisms Frattini subgroups generalized Fitting subgroups Coleman automorphisms Frattini subgroups generalized Fitting subgroups
  • 相关文献

参考文献1

二级参考文献15

  • 1Jackowski S. , Marciniak Z.. Group automorphisms inducing the identity map on cohomology[J]. J. Pure Appl. Algrbra, 1987, 44:241-250.
  • 2Sehgal S. K.. Units in integral group rings[M]. Pitman Monogar. Surreys Pue Appl. Math. , Essex, 1993.
  • 3Dade E. C.. Locally trivial outer automorphisms of finite groups[J]. Math. Z. , 1970, 114: 173-179.
  • 4Dade E. C.. Correction to "Locally trivial outer automorphisms of finite groups"[J]. Math. Z.. 1972, 124:259-260.
  • 5Dade E. C.. Outer automorphisms centralizing every nilpotent subgroup of a finitegroup[J]. Math. Z. ,1973, 130:1-18.
  • 6Dade E. C.. Outer automorphisms centralizing every abelian subgroup of a finitegroup[J]. Math. Z. , 1974, 137:93-127.
  • 7Dade E.C.. Sylow-eentralizing sections of outer automorphism groups of finite groups are nilpotent [J]. Math. Z. ,1975, 141:57-76.
  • 8Huppert B.. Endliehe Gruppen I[M]. Springer, 1967.
  • 9Hertweck M. , immerle W. K.. Coleman automorphisms of finite groups[J]. Math. Z. , 2002, 242: 203-215.
  • 10Hertweck M.. Local analysis of the normalizer problem[J]. J. Pure Appl. Algebra, 2001, 163:259- 276.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部