期刊文献+

A NOTE ON COMPLETE MANIFOLDS WITH FINITE VOLUME

A NOTE ON COMPLETE MANIFOLDS WITH FINITE VOLUME
下载PDF
导出
摘要 In this article, we concern on complete manifolds with finite volume. We prove that under some assumptions about scalar curvature and the Yamabe constant, the manifolds must be compact, and we also give the diameter estimates in terms of the scalar curvature and the Yamabe constant. In this article, we concern on complete manifolds with finite volume. We prove that under some assumptions about scalar curvature and the Yamabe constant, the manifolds must be compact, and we also give the diameter estimates in terms of the scalar curvature and the Yamabe constant.
作者 邓洪存
出处 《Acta Mathematica Scientia》 SCIE CSCD 2014年第3期807-813,共7页 数学物理学报(B辑英文版)
关键词 DIAMETER scalar curvature complete manifold with finite volume Diameter scalar curvature complete manifold with finite volume
  • 相关文献

参考文献13

  • 1Aubin T. Equations differentielles non lineaires et probleme de Yamabe concernant la courbure scalaire. J Math Pures Appl, 1976, 55(9): 269-296.
  • 2Avilies P, McOwen R C. Conformal deformation to constant negative scalar curvature onnoncompact Riemannian manifolds. J Diffenrential Geom, 1988, 27(2): 225-235.
  • 3Grosse N. The Yamabe equation on manifolds of bounded geometry, arXiv: 0912.4398v3.
  • 4Grosse N. The Yamabe equation on complete manifolds with finite volume, arXiv: 1111.2471vl.
  • 5Hoffman D, Spruck J. Sobolev and isoperimetric inequalities for Riemannian submanifolds. Comm Pure Appl Math, 1974, 27:715 -727.
  • 6Jin Z R. A counterexample to the Yamabe problem for complete noncompat manifolds//Lecture Notes in Math. Berlin: Springer, 1988, 1306:93-101.
  • 7Michael J H, Simon L M. Sobolev and mean-value inequalities on generalized submanifolds of Rn. Comm Pure Appl Math, 1973, 26:361-379.
  • 8Schoen R. Conformal deformation of a Riemannian metric to constant scalar curvature. J Diffenrential Geom, 1984, 2:479-495.
  • 9Simon L M. Existence of surfaces minimizing the Willmore functional. Comm Anal Geom, 1993, 2:281-326.
  • 10Topping P. Mean curvature flow and geometric inequalities. J Reine Angew Math, 1998, 503:47 -61.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部