期刊文献+

Expression of Chicken Toll-Like Receptors and Signal Adaptors in Spleen and Cecum of Young Chickens Infected with Eimeria tenella 被引量:2

Expression of Chicken Toll-Like Receptors and Signal Adaptors in Spleen and Cecum of Young Chickens Infected with Eimeria tenella
下载PDF
导出
摘要 Toll-like receptors (TLRs) are a group of highly conserved molecules which initiate the innate immune response to pathogens by recognizing structural motifs of microbes. Understanding the changes in chicken Toll-like receptors (ChTLRs) and signal adaptors expression that occur with Eimeria tenella infection will help to elucidate the molecular basis of immune control of coccidiosis caused by Eimeria. The present study detected the dynamic changes in the expression of ChTLRs and associated signal adaptors in the spleen and cecum ofE. tenella-infected chickens during the early stage of infection. The results showed that the expression peak for ChTLRs, MyD88 and TRIF occurred at 12 h post-infection (hpi), ChTLR3, ChTLRI 5 and MyD88 mRNA expression in the spleen ofE. tenella infected chickens were significantly higher (P〈0.05) than that of negative control chickens, and there were similar tendencies of these molecules expression in the cecum and spleen of E. tenella-infected chickens. The expression of MyD88 was upregnlated at four time points in the cecum of E. tenella-infected chickens. The results of this study indicate that ChTLR3, ChTLR15 and MyD88 play a role in young chickens infected with E. tenella. Toll-like receptors (TLRs) are a group of highly conserved molecules which initiate the innate immune response to pathogens by recognizing structural motifs of microbes. Understanding the changes in chicken Toll-like receptors (ChTLRs) and signal adaptors expression that occur with Eimeria tenella infection will help to elucidate the molecular basis of immune control of coccidiosis caused by Eimeria. The present study detected the dynamic changes in the expression of ChTLRs and associated signal adaptors in the spleen and cecum ofE. tenella-infected chickens during the early stage of infection. The results showed that the expression peak for ChTLRs, MyD88 and TRIF occurred at 12 h post-infection (hpi), ChTLR3, ChTLRI 5 and MyD88 mRNA expression in the spleen ofE. tenella infected chickens were significantly higher (P〈0.05) than that of negative control chickens, and there were similar tendencies of these molecules expression in the cecum and spleen of E. tenella-infected chickens. The expression of MyD88 was upregnlated at four time points in the cecum of E. tenella-infected chickens. The results of this study indicate that ChTLR3, ChTLR15 and MyD88 play a role in young chickens infected with E. tenella.
出处 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第4期904-910,共7页 农业科学学报(英文版)
基金 the Fundamental Research Funds for the Central Universities,China(XDJK2010C099) the Science Fundation for Young Scientists of Southwest University,China(QNRC200804) the Scientific Research Fund of Veterinary Medicine Department of Southwest University,China
关键词 Eimeria tenella signal adaptors Toll-like receptors spleen and cecum CHICKEN Eimeria tenella, signal adaptors, Toll-like receptors, spleen and cecum, chicken
  • 相关文献

参考文献28

  • 1Abasht B, Kaiser M G, Lamont S J. 2008. Toll-like receptor gene expression in cecum and spleen of advanced intercross line chicks infected with Salmonella enterica serovar Enteritidis. Veterinary Immunology and Immunopathology, 123, 314-323.
  • 2Albiger B, Dahlberg S, Henriques-Normark B, Normark S. 2007. Role of the innate immune system in host defence bacterial infections: focus on the Toll-like receptors. Journal of Internal Medicine, 261, 511-528.
  • 3Augustine P C, Danforth H D. 1986. A study of the dynamics of the invasion of immunized birds by Eimeria sporozoites. Avian Disease, 30, 347-351.
  • 4Brisbin J T, Zhou H, Gong J, Sabour P, Akbari M R, Haghighi H R, Yu H, Clarke A, Sarson A J, Sharif S. 2008. Gene expression profiling of chicken lymphoid cells after treatment with Lactobacillus acidophilus cellular components. Developmental and Comparative Immunology, 32, 563-574.
  • 5Brownlie R, Allan B. 2011. Avian toll-like receptors. Cell and Tissue Research, 343, 121-130.
  • 6Ciraci C, Lamont S J. 2011. Avian-specific TLRs and downstream effector responses to CpG-induction in chicken macrophages. Developmental and Comparative Immunology, 35, 392-398.
  • 7Dalloul R A, Lillehoj H S. 2005. Recent advances in immunomodulation and vaccination strategies against coccidiosis. Avian Disease, 49, 1-8.
  • 8Del C E, Gallego M, Lee S H, Lillehoj H S, Quilez J, Lillehoj E P, Sanchez-Acedo C. 2011. Induction of protective immunity against Eimeria tenella infection using antigen-loaded dendritic cells (DC) and DC- derived exosomes. Vaccine, 29, 3818-3825.
  • 9Gazzinelli RT, Denkers E Y. 2006. Protozoan encounters with Toll-like receptor signalling pathways: implications for host parasitism. Nature Reviews Immunology, 6, 895- 906.
  • 10Higgs R, Cormican P, Cahalane S, Allan B, Lloyd A T, Meade K, James T, Lynn D J, Babiuk L A, O’farrelly C. 2006. Induction of a novel chicken Toll-like receptor following Salmonella enterica serovar typhimurium infection. Infection and Immunity, 74, 1692-1698.

同被引文献8

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部