期刊文献+

交叉型裂纹扩展模拟的一种有效方法 被引量:3

An efficient method for cross crack growth analysis
原文传递
导出
摘要 结合广义有限元法(GFEM)和扩展有限元法(XFEM)的特点,提出了一种新的数值方法——广义扩展有限元法(GXFEM).阐述了广义扩展有限元法的基本原理,对相关公式进行推导,探讨数值实现中需注意的重要问题,给出利用广义扩展有限元法进行断裂分析时应力强度因子的计算方法,编写了广义扩展有限元法程序.通过算例进行了应力强度因子的计算,模拟了结构裂纹的扩展过程.算例结果表明,利用广义扩展有限元法计算交叉裂纹扩展问题,不需要进行过密的网格划分,且网格在裂纹扩展后无需重新剖分,具有相当高的计算精度. A new numerical method-generalized extended finite element method (GXFEM) is proposed in this paper by combining the generalized finite element method (GFEM) and the extended finite element method (XFEM). The basic principles of GXFEM are presented in detail and relevant formula is derived. Some important problems in numerical realization are discussed. Then, a method of calculating stress intensity factors (S1F) in the analysis of fracture problems is given by using GXFEM. The GXFEM program to analyze fracture process is compiled. The numerical examples are applied to calculate the SIF and to simulate the crack propagation. The results show that it is not necessary to set frequent grids, or to re-mesh when cracks propagate. In addition, the results are provided with very high accuracy.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2014年第5期539-546,共8页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金资助项目(批准号:51179064 11132003 11372099)
关键词 广义扩展有限元法 应力强度因子 裂纹扩展 数值模拟 断裂力学 generalized extended finite element method, stress intensity factors, crack propagation, numerical simulation,fracture mechanics
  • 相关文献

参考文献12

  • 1解德,钱勤,李长安.断裂力学中的数值计算方法及工程应用.北京:科学出版社,2009.
  • 2陈宜周.多裂纹问题积分方程方法及相关问题[J].力学进展,2008,38(3):358-387. 被引量:2
  • 3王庆丰,黄小平,崔维成.不同位置裂纹间的互相作用及其影响规律的有限元分析[J].江苏科技大学学报(自然科学版),2006,20(1):16-19. 被引量:7
  • 4秦飞,岑章志,杜庆华.多裂纹扩展分析的边界元方法[J].固体力学学报,2002,23(4):431-438. 被引量:10
  • 5Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. Int J Num Meth Eng, 1999, 45:601-620.
  • 6Belytschko T, Moes N, Usui S, et al. Arbitrary discontinuities in finite elements. Int J Num Meth Eng, 2001, 50:993-1013.
  • 7Daux C, Moes N, Dolbow J, et al. Arbitrary branched and intersecting cracks with the extended finite element method. Int J Num Meth Eng, 2000, 48:1741-1760.
  • 8Strouboulis T, Copps K, Babushka I. The generalized finite element method: an example of its implementation and illustration of its performance. Int J Num Meth Eng, 2000, 47:1401-1417.
  • 9Babuska I, Banerjee U, Osborn J E. On the principles for the selection of shape functions for the Generalized Finite Element Method. Comput Meth Appl Mech Eng, 2002, 191(49-50): 5595-5629.
  • 10Strouboulis T, Zhang L, Babushka I. Generalized finite element method using mesh-based handbooks: Application to problems in domains with many voids. Comput Meth Appl Mech Eng, 2006,195:852-879.

二级参考文献215

共引文献41

同被引文献15

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部