期刊文献+

TMCP型Q500qENH特厚耐候桥梁钢板的工业试制 被引量:13

Industrial Run to Produce TMCP Processed Q500qENH Weathering Heavy Plate for Bridge
原文传递
导出
摘要 提出一种低碳微合金MnCuNiCrMo钢,测试了其过冷奥氏体连续冷却相变(CCT)曲线,分别研究未再结晶区变形量、冷却速率对其相变行为的影响。使用厚板坯连铸(CC)—钢板控轧控冷(TMCP)工艺流程,在5m宽厚板工业生产线上成功开发出60mm特厚Q500qENH桥梁钢板。开发钢板的显微组织为细密粒状贝氏体(GB)+针状铁素体(AF)+多边形铁素体(PF);横向室温屈服强度大于560MPa,抗拉强度大于660MPa,伸长率大于20%;Z向面缩率大于76%;-40℃下纵向Charpy冲击吸收能量(KV2)大于170J;零塑性温度为-85℃。 A low carbon micro-alloyed MnCuNiCrMo heavy plate steel was proposed to develop 60mm thick plate with yield strength (YS) of 500 MPa and secured low temperature toughness. The effects of pancaking of austenite and cooling rate on continuous cooling transformation (CCT) behavior of the subject steel were investigated. Integrated industrial production trial consisted of continuous casting of thick slab and thermomechanical control processing (TMCP) of heavy plate employing a 5 m width rolling mill was conducted to produce the advanced product. The microstructure of the plate consists of granular bainite (GB)+acicular ferrite (AF) +polygonal ferrite (PF). The room temperature tensile properties in transverse direction are featured by YS greater than 560 MPa, ultimate tensile strength (UTS) greater than 660 MPa and total elongation greater than 20 pet, meanwhile, the area reduction rate in Z direction greater than 76%. The Charpy V notch (CVN) impact toughness in longitudinal direction is greater than 170J at -40℃, while the nil-ductility transition temperature (NDTT) is at -85℃.
出处 《钢铁》 CAS CSCD 北大核心 2014年第4期69-75,共7页 Iron and Steel
关键词 CCT TMCP Q500qENH 特厚耐候钢板 CCT TMCP QS00qENH weathering steel plate for bridge
  • 相关文献

参考文献13

  • 1姚昌荣,李亚东,强士中.美国桥梁高性能钢的发展与应用[J].世界桥梁,2005,33(1):57-61. 被引量:26
  • 2Kawabata Fumimaru, Matsui Kazuyuki, Obinata Tadashi, et al. Steel Plates for Bridge Use and Their Application Teeh- nologies[J]. JFE Technical Report, 2004,2 (3) : 85.
  • 3Miki C, Homma K, Tominaga T. High Strength and High Performance Steels and Their Use in Bridge Structures [J].Journal of Constructional Steel Research. 2002,58 (1) : 3.
  • 4Kayser C R, Swanson J A, Linzell D G. Characterization of Material Properties of HPS-485W(70W) TMCP for Bridge Girder Applications [J].Journal of Bridge Engineering,2006, 11(1) :99.
  • 5Wilson A D,Gross J H,Stout R D,et al. Development of Improved HPS-100W Steel for Bridge Applications [J].2002 International Symposium on Microalloyed Steels, 2002 (7- 9) : 32.
  • 6Bai D Q,Nelson T,Bodnar R,et al. Development of High-Performance Steels for Bridge Applications at SSAB North American [J]. Iron Steel Technology, 2009,6 (10) : 65.
  • 7翁宇庆,康永林.中国轧钢近年来的技术进步[J].钢铁,2010,45(9):1-13. 被引量:27
  • 8吴保平,黄运华,张跃,蔡珍.轧制工艺对高性能桥梁钢组织与性能的影响[J].材料热处理学报,2011,32(8):113-117. 被引量:9
  • 9陈俊,唐帅,周砚磊,刘振宇,王国栋,杨颖,陈军平.低碳Q690qENH高强桥梁钢的动态再结晶行为[J].材料研究学报,2012,26(2):199-205. 被引量:16
  • 10高新亮,付贵勤,邓志银,林光铭,朱苗勇.含Cu桥梁耐候钢的相变规律[J].过程工程学报,2010,10(5):998-1003. 被引量:5

二级参考文献91

共引文献105

同被引文献160

引证文献13

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部