期刊文献+

高阶非齐次线性微分方程解沿径向的振荡性质 被引量:1

The Radial Oscillation of Higher Order Non-Homogeneous Linear Differential Equation
下载PDF
导出
摘要 运用角域上值分布的理论和方法,研究了高阶非齐次线性微分方程的无穷级解沿径向上的振荡性质,得到了方程的无穷级解沿Borel方向上的超级和超级零点收敛指数的估计. It is investigated that the radial oscillation of infinite order solutions of higher order nonhomogeneous linear differential equation, by using the fundamental theory and method of value distribution in angular domain. It was obtained that the estimations on the hyper order and the hyper order convergence exponent of the sequence of zero of infinite order solutions along it' s Borel direction of hyper order.
作者 胡军 易才凤
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2014年第2期162-166,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(11171170)资助项目
关键词 微分方程 角域 径向 BOREL方向 超级 differential equations solutions angular domain radial Borel direction hyper order
  • 相关文献

参考文献14

二级参考文献36

  • 1涂金,陈宗煊,曹廷彬,郑秀敏.某类高阶微分方程解的复振荡[J].江西师范大学学报(自然科学版),2005,29(1):8-11. 被引量:5
  • 2李纯红,顾永兴.微分方程f″+e^(az)f′+Q(z)f=F(z)的复振荡[J].数学物理学报(A辑),2005,25(2):192-200. 被引量:3
  • 3Chen Zongxuan, Yang Chungchun. Quantitative estimation on the zeros and growths of entire solutions of linear differential equations. Complex Vsriables, 42: 119- 133.
  • 4Gundersen G. Estimates for the logrithmic derivative of a meromorphic function, plus similar estimates.J. London Math Soc, 1988,37(2):88-104.
  • 5Frank G, Hellerstein S. On the meromorphic solutions of non-homogeneous linear differential equations with polynomial coefficients. Proc. London Math. Soc. 1986, 53(3):407-428.
  • 6Chen Zongxuan, Yang Chungchun. Some Oscillation Theorems for Linear Differential Equations with Meromorphic Coefficients. Southeast Asian Bulletin of Methematics 1999,23: 409- 417.
  • 7Hayman W.Meromorphic Functions[M].Oxford:Clarendon Press,1964.
  • 8Gundersen G. Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates[ J ]. London Math. Soc. 1988,37(2) :88-104.
  • 9CHEN Zong- xuan. The growth of solutions of second order linear differential equations with meromorphic coefficients[J]. Kodai Math J,1999,22(2) :208-221.
  • 10CHEN Zong- xuan, YANG Chung-chun. Quantitative estimations on the zeros and growths of entire solutions of linear differential equations[J] .Complex Variables,2000, (42): 119- 133.

共引文献26

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部