期刊文献+

涡轮盘腔轴向封严流动的数值研究 被引量:9

Numerical investigation of axial seal flow in turbine cavity
原文传递
导出
摘要 利用数值方法研究了轴向封严结构内的燃气入侵与封严流动.研究表明:由于封严间隙处流场参数梯度较大,封严面非匹配网格影响了数值传递从而造成封严效率数值结果偏高.定常数值模拟结果低估了导叶下游静压的周向不均匀性,同时没有考虑转静干涉,所得到的封严效率较非定常结果要高.非定常计算得到的导叶下游静压周向分布与试验结果符合较好,在盘腔子午面内形成3个涡核结构,引导静盘壁面流体流向动盘以补充动盘泵效应所需流量.封严间隙内存在旋转的燃气入侵与出流结构,燃气入侵伴随较大的切向速度,封严间隙内的封严间隙涡对封严效率有积极影响,封严面上径向速度的瞬时值为时均值的3倍以上.燃气入侵受到导叶尾缘周向静压分布和转子旋转的共同影响. Hot gas ingestion and seal flow in axial seal configuration was investigated numerically.The results show that the unmatched mesh strategy on sealing surface affects the numerical transfer because of bigger gradient of parameters which lead to higher sealing effectiveness.The steady simulation underestimates the circumference pressure unevenness downstream the vane and ignores the interaction of stator and rotor;as a result the sealing effectiveness is much bigger than unsteady simulation.The unsteady results agree with the experimental date very well.Three vortexes appear in the cavity meridian plane,and guide the flow near static disc to rotor disc for supplement the flow required by disc entrainment. Rotating hot gas ingestion and egress structures appear in seal clearance,and the ingestion flow has bigger tangential velocity.The seal clearance vortexes in seal clearance have positive effects on sealing efficiency.The transient radial velocity is 3times bigger than time-averaged value on sealing surface.The hot gas ingestion is affected by the circumferential distribution of static pressure downstream of vane and rotor rotation.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2014年第4期927-934,共8页 Journal of Aerospace Power
基金 国家自然科学基金(51161130525) 北京航空航天大学基本科研业务费-博士研究生创新基金(YWF-13-A01-17)
关键词 轴向封严结构 轮缘封严机理 燃气入侵 非定常 涡轮盘腔 axial seal configuration rim seal mechanism hot gas ingestion unsteady turbine cavity
  • 相关文献

参考文献18

  • 1Johnson B V, Mack G J,Paolillo R E, et al. Turbine rim seal gas path flow ingestion mechanisms[R]. AIAA 94- 2703,1994.
  • 2Coren D D, Atkins N R, Turner J R, et al. An advanced multi-configuration stator well cooling test facility [R]. ASME Paper GT2010-23450,2010.
  • 3Hills N J, Chew J W, Turner A B. Computational and mathematical modeling of turbine rim seal ingestion [J]. Journal of Turbomachinery, 2002,124 (2) : 306-315.
  • 4Gentilhomme O, Hills N J, Turner A B, et al. Measure- ments and analysis of ingestion through a turbine rim seal [J]. Journal of Turbomaehinery,2003,125(3) :505-512.
  • 5Roy R P,Zhou D W,Ganesan S,et al. The flow field and main gas ingestion in a rotor-stator eavity[R]. ASME Pa- per GT2007-27671,2007.
  • 6Chew J W. Developments in turbomachinery internal air systems[J]. Proceedings of the Inslitution of Mechanical Engineers:Part C Journal of Mechanical Engineering Sci- ence,2009,223(1) : 189 234.
  • 7Jakoby R, Zierer T, Lindblad K, et al. Numerical simula- tion of the unsteady flow field in an axial gas turbine rim seal eonfiguration[R]. ASME Paper GT2004-53829,2004.
  • 8Cao C,Chew J W,Millington P R,et al. Interaction of rim seal and annulus flow in an axial flow turbine[J]. Journal of Engineering foras Turbines and Power,2004,126(4) : 786-793.
  • 9Schuepbach P,Abhari R S,Rose M C-,et al. Effects of suc- tion and injection purge flow on the secondary flow struc- tures of a high-work turbine[R]. ASME Paper GT2008- 50471,2008.
  • 10Steve J,Julie L,Guy D,et al. Simulations of flow ingestion and related structures in a turbine disk cavity[R]. ASME Paper GT2010-22729,2010.

二级参考文献47

  • 1Wang C Z,Johnson B V,De Jong F,et al. Comparison of flow characteristics in axial-gap seals for close- and wide- spaced turbine stages[C]//Proceedings of ASME Turbo Expo 2007. Montreal,Canada: Amer. Soc. Mechanical En- gineers, 2007 : 1219-1229.
  • 2Daniels W A,Johnson B V,Graber D J,et al. Rim seal ex- periments and analysis for turbine applications[J]. Journal of Turbomachinerv, 1992,114 (2) : 426-432.
  • 3Phadke U P,Owen J M. Aerodynamic aspects of the seal- ing of gas-turbine rotor-stator systems Part 1:the behav- iour of simple shrouded rotating-disk systems in a quies- cent environment [J]. International Journal Heat Fluid Flow, 1988,9 (2) : 98-105.
  • 4Phadke U P,Owen .I M. Aerodynamic aspects of the seal- ing of gas-turbine rotor-stator systems Part 2: the performance of simple seals in a quasi-axisymmetric external flow[J]. International Journal Heat Fluid Flow, 1988, 9 (2) :106-112.
  • 5Chew J W,Dadkhah S, Turner A B. Rim sealing of rotor stator wheelspaces in the absence of external flow [J]. Journal of Turhomachinery, 1992,114(2) :433-438.
  • 6Chew J W. A theoretical study of ingress for shrouded ro- tating disk systems with radial outflow[J]. Journal of Tur- bomachinery, 1991,113(1) :91-97.
  • 7Dadkhah S,Turner A B,Chew J W. Performance of radial clearance rim seals in upstream and downstream rotor-sta- tor wheelspaces[J]. Journal of Turbomachinery, 1992,114 (2) :439-445.
  • 8Owen J M. Prediction of ingestion through turbine rim seals Part I : rotationally induced ingress[J]. Journal of Turbomaehinery,2011,133(3) :031005(9 pages).
  • 9Owen J M. Prediction of ingestion through turbine rim seals Part Ⅱ : externally induced and combined ingress[J]. Journal of Turbomachinery ,2011,1aa(a):031006(9 pages).
  • 10Owen J M,Zhou K,Pountney O,et al. Prediction of ingress through turbine rim seals Part 1: externallykinduced in- gress[C]//Proceedings of ASME Turbo Expo 2010. Glas gow,Scotland,UK:Amer. Soc. Mechanical Engineers,2010: 1217-1234.

共引文献26

同被引文献66

引证文献9

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部