摘要
可再生生物质资源的开发与利用能够缓解化石燃料产生的温室气体对环境的负面影响.在生物质燃料制备过程中联产高附加值化学品能大幅提高生物质炼制的经济性.愈创木酚是常见的木质纤维素快速热解产物.本文研究了低温液相氧化愈创木酚制备马来酸,并重点考察了催化剂添加量、pH值、反应时间和反应温度等反应条件的影响.研究发现,在钛硅沸石-过氧化氢碱溶液氧化反应体系中(80℃,pH=13.3),20_30mol%的愈创木酚可以选择性转化为马来酸.同时初步探讨了愈创木酚氧化开环转化为马来酸的反应机理.
To mitigate the negative environmental impact of greenhouse gas (GHG) emission originated from the use of fossil fuels, the chemical world is switching to utilize renewable biomass resources. Co-producing value-added chemicals is important for an integrated biorefinery to improve eco-nomics of biofuels. Lignin derived compounds, e.g. guaiacol, are common by-products of fast pyroly-sis of lignocellulosic biomass. In this paper, the feasibility of low-temperature selective oxidation of guaiacol to value-added dicarboxylic acids, e.g. maleic acid, was investigated using titanium sili-calite/hydrogen peroxide (TS-1/H2O2) reaction system. Under the reaction conditions (80 ℃ and the initial pH=13.3), the molar yields of maleic acid from guaiacol were approximately 20%-30%. The effects of catalyst amount, initial pH values, reaction time, and temperature on the yields of maleic acid were investigated. A possible reaction mechanism of TS-1 catalyzed aromatic ring opening was proposed.
出处
《催化学报》
SCIE
EI
CAS
CSCD
北大核心
2014年第5期622-630,共9页