摘要
为了对气体绝缘全封闭组合电器GIS(gas insulated switchgear)更好地进行故障诊断,本文结合小波包变换、奇异值分解SVD(singular value decomposition)、能量值法,提出了基于小波包奇异能量WPSEG(wavelet packet singular energy)值的GIS故障识别方法,该方法通过量化故障特征对不同故障进行识别。对故障信号进行小波包分解重构得到小波包系数矩阵;利用SVD分解求得矩阵的奇异特征值,最终求取奇异特征值的能量。对现有的GIS 4类超高频局部放电仿真信号进行分析表明,不同故障的WPSEG值不同,同一类故障,小波包分解层数不会影响WPSEG值,并且在相同噪声环境下,4类缺陷的WPSEG值是成比例增长的,不会影响故障的识别。通过与小波包奇异熵WPSEP(wavelet packet singular entropy)法在GIS故障识别中的应用,说明WPSEG值的优越性。
In order to diagnoses gas insulated switchgear(GIS)better,this paper proposes wavelet packet singular energy (WPSEG)method based on wavelet packet,singular value,and energy to distinguish GIS faults.The method identifies different faults by quantified fault features.First of all,use wavelet packet to decompose the fault signal and obtain the wavelet packet coefficient matrix.Secondly,obtain the singular eigenvalue of the matrix using singular value decomposition (SVD),and finally obtain the energy of singular eigenvalue.Simulating and analyzing the existing four ultra-high frequency partial discharge faults of GIS,simulation results show that,the WPSEG of different faults is different.The wavelet packet decomposition level does not affect WPSEG value under the same type of failure.And in the same noise environment,which does not affect the fault identification,the wavelet packet singular energy (WPSEG) value of four types of defects is growing in proportion.Through comparing WPSEG method with wavelet packet singular entropy(WPSEP) method applied in GIS fault identification,the result indicates the superiority of WPSEG method.
出处
《电力系统及其自动化学报》
CSCD
北大核心
2014年第4期35-38,49,共5页
Proceedings of the CSU-EPSA
关键词
气体绝缘全封闭组合电器
故障识别
小波包奇异能量
奇异值
熵
gas insulated switchgear (GIS)
fault recognition
wavelet packet singular energy (WPSEG)
singular value
entropy