期刊文献+

广义ρ-d_I-V-Ⅰ型一致不变凸条件下的不可微多目标分式规划(英文)

Nondifferentiable Multiobjective Fractional Programming with Generalized ρ-d_I-V Type-Ⅰ Univexity
下载PDF
导出
摘要 本文引进了一类ρ-dI-V-Ⅰ型一致不变凸的新概念,研究了一个带不等式约束的不可微多目标分式规划问题,并且其中每个目标函数和约束函数都按自己的方向可导.在广义ρ-dI-V-Ⅰ型一致不变凸条件下,得到了几个充分最优性条件.而且,建立了一个一般的对偶模型,得到了一个对偶结果.推广了该领域以前一些已知结果. In this paper,we introduce new concepts ofρ-dI -V type-I univexity and consider a nondifferen-tiable multiobjective fractional programming with inequality constraints in which each component of the objective and constraint functions is directionally differentiable in its own direction.A number of sufficient optimality con-ditions are established under generalized ρ-dI -V type -I univexity.Moreover,a general dual is formulated and a duality result is obtained.Our results extend the previously known results in this area.
作者 焦合华
出处 《昆明理工大学学报(自然科学版)》 CAS 北大核心 2014年第2期120-128,共9页 Journal of Kunming University of Science and Technology(Natural Science)
基金 Supported by the National Natural Science Foundation of China(61373174) Supported by the Education Committee Research Foundation of Chongqing(KJ131314) Emphasis Research Project of Yangtze Normal University(2013XJZD006)
关键词 多目标分式规划 广义dI -不变凸 I型一致不变凸 最优性 对偶性 multiobjective fractional programming generalized dI -invexity Type-I univexity optimality du-ality
  • 相关文献

参考文献21

  • 1Gupta I, Vartak M N. Kuhn - Tucke and Fritz John type sufficient optimality conditions for generalized semilocally convex pro- grams[J]. Opseareh, 1989, 26:11-27.
  • 2Mishra S K. Generalized proper efficiency and duality for a class of nondiffierentiable muhiobjective variational problems with V - invexity[ J]. J Math Anal Appl, 1996,202:53 -71.
  • 3Mishra S K. On multiple objective optimization with generalized univexity[J]. J Math Anal Appl, 1998,224:131 -148.
  • 4Mishra S K, Mukherjee R N. On generalized convex muhiobjective nonsmooth programming [ J J. J Aust Math Soc Ser B, 1998, 38. 140 - 148.
  • 5Mishra S K, Rueda N G. On univexity -type nonlinear programming problems[J]. Bull Allahabad Math Soc, 2001,16: 105 -113.
  • 6Mishra S K, Wang S Y, Lai K K. Nonsmooth minimax problems under V -p -r -type -I invexity[ J]. Internat J Pure Appl Math, 2003(6) :63 -75.
  • 7Weir T, Mond B. Preinvex functions in multiple objective optimization[ J]. J Math Anal Appl, 1988,136:287 -299.
  • 8Yang X M, Li D. Semistrictly preinvex functions[ J]. J Math Anal Appl, 2001, 258 : 287 - 308.
  • 9Ewing G M. Sufficient conditions for global minima of suitable convex functionals from variational and control theory[ J ]. SIAM Rev, 1977,19 : 202 - 220.
  • 10Kaul R N, Kaur S. Generalization of convex and related functions[J]. European J Oper Res, 1982(9) : 369 -377.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部