期刊文献+

基于核偏鲁棒M-回归的间歇反应过程混合模型辨识 被引量:2

Identification of Hybrid Models for Batch Reaction Processes Based on Kernel Partial Robust M-Regression
下载PDF
导出
摘要 提出了一种混合模型两步辨识策略,用以解决间歇反应过程的建模问题,并能够有效融合先验知识及过程数据信息。该策略将混合模型的同步辨识分解成为两个独立的步骤,首先确定混合模型的结构,并利用Tikhonov正则化方法实现间歇反应过程反应速率的精确估计;接下来采用核偏鲁棒M-回归(kernel partial robust M-regression,KPRM)算法建立过程变量与反应速率间的经验模型,从而有效抑制过程数据中离群点的影响。利用半间歇过程仿真实验对所提出的策略进行验证,获得了相比于传统方法更高的估计及预测精度。 In order to resolve the problem of modeling batch reaction process, a two-step strategy was presented for the identification of hybrid models, where the prior knowledge and the information provided by process data can be effectively integrated. The simultaneous identification of hybrid model was decomposed into two separate steps by the proposed strategy. At the first step, the structure of hybrid model was determined, and Tikhonov regularization method was employed to estimate the reaction rates of batch reaction process precisely. At the second step, kernel partial robust M-regression (KPRM) algorithm was adopted to calibrate the empirical model between the process variables and the reaction rates, where the negative effects of outliers in process data can be effectively suppressed. A semi-batch simulation experiment was used to verify the proposed strategy, and comparing with traditional method, higher estimation and prediction accuracy were obtained.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2014年第1期115-122,共8页 Journal of Chemical Engineering of Chinese Universities
基金 国家高技术研究发展计划(2011AA060204) 国家自然科学基金(61203103) 中央高校基本科研业务费(N110304006)
关键词 间歇反应过程 混合模型 模型辨识 核偏鲁棒M-回归 离群点 batch reaction process hybrid model model identification kernel partial robust M-regression outlier
  • 相关文献

参考文献16

  • 1赵春晖,王福利,姚远,高福荣.基于时段的间歇过程统计建模、在线监测及质量预报[J].自动化学报,2010,36(3):366-374. 被引量:59
  • 2杨国军,李秀喜,陈赟,钱宇.间歇过程实时优化[J].化工学报,2011,62(10):2839-2844. 被引量:7
  • 3Tholudur A, Ramirez W F. Neural-network modeling and optimization of induced foreign protein production [J]. AIChEJournal, 1999, 45(8): 382-411.
  • 4Yang A, Martin E, Morris J. Identification of semi-parametric hybrid process models [J]. Computers and Chemical Engineering, 2011, 35(1), 63-70.
  • 5Jia Runda, Mao Zhizhong, Chang Yuqing, et al. Soft-sensor for copper extraction process in cobalt hydrometallurgy based onadaptive hybrid model [J]. Chemical Engineering Research and Design, 2011, 89(6): 722-728.
  • 6Kahrs O, Marquardt W. The validity domain of hybrid models and its application in process optimization [J], ChemicalEngineering and Processing: Process Intensification, 2007, 46(11): 1054-1066.
  • 7Bardow A, Marquardt W. Incremental and simultaneous identification of reaction kinetics: methods and comparison [J].Chemical Engineering Science, 2004, 59(13): 2673-2684.
  • 8Psichogious D C, Ungar L H. A hybrid model neural network-first principles approach to process modeling [J]. AIChE Journal,1992, 38(10): 1499-151.
  • 9van Lith P F, Betlem B H L, Roffel B. A structured modeling approach for dynamic hybrid fuzzy-first principles models [J].Journal of Process Control, 2002, 12(5): 605-615.
  • 10Bardow A, Marquardt W. Incremental identification of kinetic models for homogeneous reaction systems [J]. ChemicalEngineering Science, 2006, 61(16): 5404-5420.

二级参考文献15

  • 1谢磊,王树青.递归核PCA及其在非线性过程自适应监控中的应用[J].化工学报,2007,58(7):1776-1782. 被引量:12
  • 2Chachuat B, Srinivasan B, et al. Adaptation strategies for real-time optimization [ J ]. Computers & Chemical Engineering, 2009, 33 (10): 1557-1567.
  • 3Fang X, Shao Z, Wang Z, Chen W, Wang K, Zhang Z, Zhou Z, Chen X, Qian J. Memory enhancement optimization (MEO) for real-time optimization of industrial process [J]. Ind. Ene. Chem. Res. , 2009, 48 (1) : 499-509.
  • 4Kuhl P, Diehl M, et al. A real time algorithm for moving horizon state and parameter estimation [J]. Computers Chemical Engineering, 2011, 35 (1) : 71-83.
  • 5Zuo K, Wu W. Semi-realtlme optimization and control of a fedbatch fermentation system[J]. Computers and Chemical Engineering, 2000, 24 (2): 1105-1109.
  • 6ArpornwichanopA, Kittisupakorn P, Mujtaba I. On-line dynamic optimization and control strategy for improving the performance of batch reactors [J]. Chemical Engineering and Processing, 2005, 44 (1): 101-114.
  • 7Rahman S, Palanki S. State feedback synthesis for on-line optimization of batch reactors with multiple manipulated inputs [J]. Computers and Chemical Engineering, 1998, 22 (10): 1429-1439.
  • 8Gattu G, Zafiriou E. Methodology for on-line setpoint modification for batch reactor control in the presence of modelling error [J]. Chemical Engineering Journal,1999, 75 (1): 21-29.
  • 9Alvarez L A, Odloak D. Robust integration of real-time optimization with linear model predictive control [J ]. Computers & Chemical Engineering, 2010, 34 (12): 1937-1944.
  • 10Kouvaritakis B, Cannon M, Rossiter J A. Recent development in generalized predictive control for continuous- time systems [J]. International Journal of Control, 1999, 72 (2): 164-173.

共引文献63

同被引文献21

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部