期刊文献+

污泥纠缠环境下机器人视觉摆脱规划路径方法 被引量:1

Robot Vision from Sludge Entanglement Environment Planning Path Model
下载PDF
导出
摘要 传统路径规划算法针对多目标情况,主要依据多单一信息融合结果选择避障路径,在中规模的污泥纠缠区域中容易陷入盲区,无法对污泥纠缠环境下的机器人路径进行准确的规划。为此提出一种改进的机器人视觉纠缠摆脱路径规划方法,借助机器人视觉仪器采集污泥纠缠特征,用归一化方法把视觉信息融入到规划模型中进行最佳路径的选择,将机器人摆脱污泥纠缠以及最短路径的要求融合成一个适应度函数,通过遗传算法搜索获取最佳机器人摆脱路径。实验结果说明,该方法对于污泥纠缠环境下机器人摆脱路径规划长度以及效率都优于传统模型,具有较高的鲁棒性。 Traditional path planning algorithm for multi-objective situation mainly depends on the results of single information fusion to choose the obstacle avoidance path. In the mesoscale sludge entanglement area, it is easy to catch in a blind area and unable to make accurate planning of the robot path under the environment of sludge entanglement. An improved path planning method t based on robot visual algorithm is proposed. The robot visual instrument and normalization method are applied to make an optimal path choice. Then, the requirements of which the robot can get rid of the sludge and find the shortest path. Finally, the genetic algorithm is applied to the search of the best robot path. The experimental results show that the method can get rid of sludge entanglement, and the length of the path planning and efficiency is better than the traditional model, and it also has better robustness.
出处 《控制工程》 CSCD 北大核心 2014年第3期365-368,共4页 Control Engineering of China
基金 国家自然科学基金项目(61203136)
关键词 污泥纠缠 机器人 神经网络 遗传算法 sludge entanglement robot neural network genetic algorithm
  • 相关文献

参考文献15

  • 1L Huang. Velocity planning for a mobile robot to track a moving target- a potential field approach [ J ]. Robotics and Autonomous Systems,2009,57( 1 ) :55-63.
  • 2Takahashi O, Schilling R J. Motion planning in a plane using gen- eralized Voronoi diagrams[ J]. IEEE Trans on Robotics and Auto- mation, 1989, 5(2) : 143-150.
  • 3Avneesh S, Erik A, Sean C, et al. Real -time path planning in dynamic virtual environment using multi - agent navigation graphs [ J ]. IEEE Trans on Visualization and Computer Graphics, 2008, 14(3) : 526-530.
  • 4Xiong N, He J, He Y, et al. A survey on decentralized flocking schemes for a set of autonomous mobile robots[ J]. Journal of Com- munication,2010,5 ( 1 ) :31-38.
  • 5谢春.蚁群算法优化特征子集和识别器参数的车牌自动识别[J].科技通报,2013,29(9):113-116. 被引量:3
  • 6徐凯,陈小平.一种多足步行机器人行走状态分析模型[J].软件学报,2009,20(8):2170-2180. 被引量:3
  • 7Mc Ghee R B, Frank A A. On the stability propertied of quadruped creeping gaits [ J ]. Mathematical Biosciences, 1968 (3) :331-351.
  • 8何娟,涂中英,牛玉刚.一种遗传蚁群算法的机器人路径规划方法[J].计算机仿真,2010,27(3):170-174. 被引量:49
  • 9J J Gibson. The ecological approach to visual perception [ M ]. Boston : Houghton Mifflin, 1979.
  • 10L Montesano, M Lopes, A Bernardino,et al. Learningobject affor- dances: from sensory-motor coordination to imitation [ J ]. IEEE Transactions on Robotics, 2008, 24 : 15-26.

二级参考文献19

共引文献52

同被引文献19

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部