期刊文献+

选择性集成核极限学习机建模及其应用研究 被引量:3

Selective Ensemble Kernel Extreme Learning Machine Modelling Approach with It's Application Research
下载PDF
导出
摘要 针对选择性集成逆向传播神经网络(GASEN-BPNN)模型训练学习速度慢,选择性集成极限学习机(GASEN-ELM)模型建模精度稳定性差等问题,提出一种基于遗传算法的选择性集成核极限学习机(GASEN-KELM)建模方法。该方法首先通过对训练样本进行随机采样获取子模型训练样本;然后采用泛化性、稳定性较佳的核极限学习机(KELM)算法建立候选子模型,通过标准遗传算法工具箱,依据设定阈值按进化策略优化选择最佳子模型;最后通过简单平均加权集成的方式获得最终GASEN-KELM模型。采用标准混凝土抗压强度数据验证了所提出方法的有效性,并与GASEN-BPNN和GASEN-ELM选择性集成算法进行比较,表明所提出方法可以在模型学习速度和建模预测稳定性方面获得较好的均衡。 The BPNN network based selective ensemble model needs long learning time to complete the training task. Although the ex- treme learning machines (ELM) based selective ensemble model has faster learning time than BP network, the predict results are not always stability. Aiming to solve these problems, a newly genetic algorithm based selective ensemble kernel extreme learning machines (GASEKELM) modelling approach is proposed. At first, the sub-models'training samples are obtained by random sampling the training data. Then, kernel extreme learning machine (KELM) modelling algorithm with good generalization and stability is used to construct the candidate sub-models. And standard genetic algorithm toolbox is used to select the best sub-models according the pre - set threshold using the evolutionary strategy. Finally, the selective ensemble model is obtained by using simple average weighting on the selected sub- models. Base on the proposed method, the soft sensor model of the concrete compression strength is constructed, which verifies the va- lidity of the proposed method. This approach also compares the proposed method with BPNN network and ELM based selective ensemble learning method. The results show that the GASEKELM approach can obtain a trade-off between the model's learning speed and predict stability. The prediction can also be used to the reorganization problem based on the image, radar and photoelectric data, which has a bright future.
出处 《控制工程》 CSCD 北大核心 2014年第3期399-402,共4页 Control Engineering of China
基金 国家自然科学基金重点项目(60534010) 中国博士后自然科学基金项目(2013M532118)
关键词 选择性集成建模 遗传算法(GA) 极限学习机(ELM) 核极限学习机(KELM) selective ensemble modelling genetic algorithm (GA) extreme learning machine (ELM) kernel extreme learning ma- chine (KELM)
  • 相关文献

参考文献10

  • 1Niu D P, Wang F L, Zhang L L, et al. Neural network ensemble modeling for r/osiheptide fermentation process based on partial least squares regression [ J ]. Chemometrics and Intelligent Laboratory Systems, 2011, 105 ( 1 ) : 125-130.
  • 2Breuer L, Huisman J A, Willems P. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM)-I: Model intercomparison with current land use[ J]. Advances in Wa- ter Resources, 2009, 32 (2) : 129-146.
  • 3Krogh A, Vedelsby J. Neural network ensembles, cross validation, and active learning[ C ]. Advances in Neural Information Process- ing Systems. 1995:231-238.
  • 4Zhou Z H, Wu J, Tong W. Ensembling neural networks: many could be better than all[ J]. Artificial Intelligence, 2002, 137 (1- 2) : 239-263.
  • 5Huang G B, Chen L, Siew C. K. Universal approximation using incremental constructive feedfoiward networks with random hidden nodes [ J ]. IEEE Transactions on Neural Networks, 2006, 17( 5 ) : 879-892.
  • 6Huang G B, Zhu Q Y, Siew C K. Extreme learning machine : the- ory and applications [ J ]. Neurocomputing, 2006, 70 ( 1-3 ) : 489- 501.
  • 7赵立杰,汤健,柴天佑.基于选择性极限学习机集成的磨机负荷软测量[J].浙江大学学报(工学版),2011,45(12):2088-2092. 被引量:13
  • 8Huang G B, Zhou H M, Ding X. J, et al. Extreme learning ma- chines for regression and muticlass classification[ J]. IEEE Trans- action on Systems, Man and Cybernetics-Part B: Cybernetics, 2011, 42(3) : 513-529.
  • 9Houck C R, Joines J A, Kay M G. A genetic algorithm Ibr function optimization : a Matlab implementation [ R ]. Raleigh : North Caro- lina State University, 1995.
  • 10Yeh I C. Modeling of strength of high perform a ceconcrete using artificial neural net works [ J]. Cement and Concrete Research, 1998, 28(12) : 1797- 1808.

二级参考文献9

  • 1TANG Jian, ZHAO l.i-jie, YUE Heng, et al. Experi mental analysis of wet mill load based on vibration sig- nals of laboratory-scale ball mill shell Source [J]. Min- erals Engineering, 2010, 23(9) : 720 - 730.
  • 2ZENG Y G, FORSSBERG E. Application of vibration ignal measurement for monitoring grinding parameters [J]. Mechanical Systems and Signal Processing, 1994, 8 6) : 703 - 713.
  • 3SCH6LKOPF B,SMOLA A J, MLLER K R. Nonlinear component analysis as a Kernel Eigenvalue Problem [J]. Neuralcomputation, 19 9 8, 10 ( 5 ) : 12 9 9 - 1319.
  • 4HANSEN L K, SALAMON P. Neural network ensem- ble [J]. 1EEE Transaction Pattern Analysis and Machine Intelligence, 1990, 12 (10): 993 1001.
  • 5ZHOU Zhi-hua, WU J, TANG W. Ensembling neural networks: Many could be better than all [J]. Artificial Intelligence, 2002, 137(1/2) : 239 - 263.
  • 6HUANG Guang-bin, ZHU Q Y , SIEW C K . Extreme learning machine: theory and applications [J]. Neuro- computing, 2006, 70(1/2/3): 489-501.
  • 7YUAN I.an, YENG Chai-Soh, HUANG Guang-bin. Ensemble of online sequential extreme learning machine [J]. Neurocomputing, 2009, 72 : 3391 - 3395.
  • 8汤健,赵立杰,岳恒,柴天佑.基于多源数据特征融合的球磨机负荷软测量[J].浙江大学学报(工学版),2010,44(7):1406-1413. 被引量:22
  • 9汤健,赵立杰,岳恒,柴天佑.磨机负荷检测方法研究综述[J].控制工程,2010,17(5):565-570. 被引量:31

共引文献12

同被引文献24

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部