期刊文献+

非线性流形上的性别识别算法研究 被引量:3

A Gender Recognition Algorithm Based on the Nonlinear Manifold
下载PDF
导出
摘要 在高维非线性空间中,如何更有效地提取人脸图像的主要特征,以及如何更有效地区分不同的性别类别,已经成为性别识别中广泛关注的问题。针对这一问题,提出一种非线性流形上的性别识别算法。该算法不但能有效提取高维空间中数据点的主要特征,并且能充分挖掘出数据流形间的几何结构和判别结构,从而使不同性别之间达到最优化分类。通过ORL和Yale两个人脸数据集实验,并与PCA(Principal Components Analysis)+LDA(Linear Discriminant Analysis),PCA+SVM(Support Vector Machine),KPCA+LDA,KPCA+SVM 4种常用的性别识别算法进行比较。实验结果显示:所提出的算法与其他传统算法相比具有更高的识别率,且有一定的鲁棒性和较高的运行效率。 Abstract: The problem of effectively extracting the main feature of face image and distinguishing between different gender categories. In higher dimensional linear space has become a widespread concern in gender recognition community. This paper proposes a nonlinear manifold on gender recognition algorithm to solve this problem. It can not only effectively extract the main characteristics of the data points in high dimensional space, but also be fully excavated the geometric structure and the discriminant structure in the data manifold, and then achieve the gender classification optimization. Experiments were carried out through two face data sets of ORL and Yale and comparing with four kinds of combination algorithms like PCA( Principal Components Analysis) + LDA( Linear Discriminant Analysis), PCA( Principal Components Analysis) + SVM( Support Vector Machine), KPCA( Kernel Principal Components Analysis) + LDA( Line- ar Discriminant Analysis), KPCA( Kernel Principal Components Analysis) + SVM( Support Vector Machine). The experimental results show that the proposed algorithm presented a better recognition performance on gender recognition and a higher recognition rate than the other commonly algorithm. Meanwhile, it has achieved robustness with high operating efficiency. Key words: gender recognition; nonlinear manifold; geometry structure; diseriminant structure; nonlinear high-dimensional space
出处 《控制工程》 CSCD 北大核心 2014年第3期459-462,共4页 Control Engineering of China
基金 国家自然科学基金项目(61272253) 国家住建部科技项目(2010-K9-22)
关键词 性别识别 非线性流形 几何结构 判别结构 高维非线性空间 gender recognition nonlinear manifold geometry structure diseriminant structure nonlinear high-dimensional space
  • 相关文献

参考文献13

  • 1何国辉,甘俊英.PCA-LDA算法在性别鉴别中的应用[J].计算机工程,2006,32(19):208-210. 被引量:19
  • 2Liu Y L,Yu L. The applications of wavelet transform and fast PCA and SVM in human face identification [ C ]. Proceedings of IEEE International Conference on Computing and Networking Technolo- gy. IEEE Press,2012 : 175-179.
  • 3Zafeiriou S, Tzimiropoulos G, Petrou M, et al. Regularized kernel discriminant analysis with a robust kernel for face recognition and verification[ J ]. Neural Networks and Learning Systems, 2012,23 (3) :526 -534.
  • 4李莉莉,李一民,蔡英.KPCA和SVM在人脸识别中的应用[J].山西电子技术,2006(5):44-46. 被引量:2
  • 5Rencher A C, Christensen W F. Methods of multivariate analysis [ M]. Wiley Press,2012.
  • 6Chang C Y, Chang C W, Hsieh C Y. Applications of block linear discriminant analysis for face recognition [ J ]. Journal of Information Hiding and Multimedia Signal Processing, 2011,2 ( 3 ) : 259-269.
  • 7Wei Jin, Zhang Jianqi, Zhang Xiang. Face recognition method based on support vector machine and particle swarm optimization[ J ]. Ex- pert Systems with Applications,2011,58 (4) :4390-4393.
  • 8王瀛,郭雷,梁楠.基于优选样本的KPCA高光谱图像降维方法[J].光子学报,2011,40(6):847-851. 被引量:14
  • 9Shao J D,Rong G,Lee J M. Learning a data-dependent kernel func- tion for KPCA-based nonlinear process monitoring [ J ]. Chemical Engineering Research and Design ,2009,87 ( 11 ) : 1471-1480.
  • 10Pan Jun, Kong Fansheng, Wang ltuiqin. Locality sensitive discnmi- nant transductive learning [ J ]. Journal of Zhejlang University, 2012,46(6) :987-994.

二级参考文献24

  • 1何国辉,甘俊英.核函数FISHER鉴别在性别鉴别中的应用[J].计算机工程与应用,2004,40(15):209-210. 被引量:5
  • 2[3]Osuna E,Freund R,Girosi F.Training support vector machines:An application to face detection[J].In Proceedings of Computer Vision and Pattern Recognition,1997,17(9):130-139.
  • 3[4]Vapkin V.Statistical Learning Theory[M].Wiley,New York:Springer-Verlag,1998.
  • 4[5]Nello Cristianini,John Shawe-Talor.An introduction to Support Vector Machines,Beijing:China Machine Press,2005.
  • 5SHAW G, MANOLAKIS D. Signal processing for hyperspectral image exploitation [ J ]. IEEE Signal Processing, Magazine, 2002, 19(1):12-16.
  • 6LANDGREBE D. Hyperspectral image analysis [J]. IEEE Signal Processing Magazine, 2002, 19(1) : 17-28.
  • 7JIA X, RICHARDS J A. Segmented principal components transformation for efficient hyperspectral remote sensing image display and classification [ J ]. IEEE Transactions on Geosscience and Remote Sensing, 1999, 3"/(1) :538-542.
  • 8STEIN D W J, BEAVEN S J, HOFF L E, et al. Anomaly detection from hyperspectral imagery [ J]. IEEE Signal Processing Magazine, 2002, 19( 1 ) : 58-69.
  • 9FAUVEL M. Decision fusion for hyperspectral classification in hyperspectral data exploitation~ theory and applications[M]. New Jersey John Wiley : Sons, 2007.
  • 10HUGHES G. On the mean accuracy of statistical pattern recog-nizers[J]. IEEE Transactions on Information Theory, 1968, 14(1) :55-63.

共引文献32

同被引文献15

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部