期刊文献+

基于时域和小波域稀疏表示的发动机状态数据压缩感知

The Compressive Sensing of Engine Status Data Based on Signal Sparse Representation in Time Domain and Wavelet Domain
下载PDF
导出
摘要 提出了基于统计分析的时域信号稀疏化算法,对发动机的转速等在时域内表现出一定聚集性的信号进行稀疏化处理;利用提升小波变换对油温、水温等在时域内表现出趋势性的信号进行稀疏化处理,并对小波系数进行阈值量化,得到了发动机状态数据的稀疏表示。采用工程上更易实现的广义循环测量矩阵对稀疏信号进行采样观测。对5种实测信号的压缩重构效果表明,重构误差在0.02以内,信号的压缩比均在0.3以内,有良好的压缩效果。 The time-domain signal sparse algorithm based on the statistical analysis was proposed in order to process engine speed signal with time-domain aggregation characteristics.The lifting wavelet transform was used for the sparse processing of trend signals such as the oil temperature and water temperature and the threshold quantization of wavelet coefficients was carried out.Finally,the sparse representation of engine status data was acquired.The sparse signal was sampled and observed with the generalized cyclic measurement matrix which can be realized easily in engineering.The results of compression and reconstruction for 5kinds of test signals show that the reconstruction error is less than 0.02and the signal compression ratio is within 0.3.
机构地区 军械工程学院
出处 《车用发动机》 北大核心 2014年第2期88-92,共5页 Vehicle Engine
关键词 压缩感知 统计分析 提升小波变换 发动机 数据处理 compressive sensing statistical analysis lifting wavelet transform engine data processing
  • 相关文献

参考文献6

二级参考文献127

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献942

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部