期刊文献+

Ag-SiO_2复合纳米颗粒薄膜的制备及其光学特性研究

THE PREPARATION AND OPTICAL PROPERTIES OF Ag-SiO_2 COMPOSITE NANOPARTICLE FILMS
下载PDF
导出
摘要 利用溶胶-凝胶法在玻璃基底上成功制备了Ag-SiO2复合纳米颗粒薄膜,SEM、TEM和XRD的表征分析表明Ag是以单晶纳米颗粒的形态均匀分散在SiO2基质中,形成了多孔状Ag-SiO2复合纳米颗粒薄膜。从Ag-SiO2复合纳米颗粒薄膜的光吸收谱发现,该复合薄膜中Ag纳米颗粒具有较强的等离子共振吸收峰,峰位在430 nm附近,随着复合薄膜中Ag、Si摩尔比的逐渐增大,等离子共振吸收峰不断增强且发生蓝移,蓝移量可达30 nm;研究AgSiO2复合纳米颗粒薄膜的光致发光特性发现,当激发波长为220 nm时,复合薄膜分别在330 nm和375 nm处出现了两个发光带,随着复合薄膜中Ag、Si摩尔比增大到0.11,两发光带均逐渐增强,继续增加Ag、Si摩尔比,两发光带又逐渐减弱,且375 nm处的发光带变化尤为显著。 The Sol-Gel technique is used to prepare the Ag-Si02 composite nanoparticle film on glass substrate. The SEM, TEM and XRD measurements of the films indicate that the single crystal metal Ag nanoparticles are uniformly embedded into the SiO2 particles. The Ag-SiO2 composite nanoparticle films are formed. The optical properties of the Ag-SiO2 composite nanoparticle films were studied. The results show that there is a surface plasmon resonance (SPR) peak around 430 nm in the optical absorption spectra of Ag-SiO2 composite nanoparticle films. As the molar ratio of Ag and Si increases, the intensity of SPR peak is gradually enhanced, and a blue shift of the SPR peak occurs. The amount of blue shift is about 30 nm. Furthermore, two photoluminescence (PL) peaks at 330 nm and 375 nm ( excitation wavelength is 220 nm) are observed in the PL spectra of the Ag-SiO2 composite nanoparticle films. In addition, the molar ratio of Ag and Si has a modulation on the two PL peaks.
出处 《真空与低温》 2014年第2期83-86,97,共5页 Vacuum and Cryogenics
基金 国家自然科学基金资助项目:11264034 11364036 甘肃省自然科学基金资助项目:1208RJZA197 西北师范大学青年教师能力提升计划项目(NWNU-LKQN-11-28)
关键词 Ag—SiO2复合纳米颗粒 表面等离子共振吸收 光致发光 Ag-SiO2 composite nanoparticle surface plasmon resonance absorption photoluminescence
  • 相关文献

参考文献17

  • 1李燕,王成伟,刘维民,力虎林,财满镇明,马书懿.Ag-AAO纳米有序阵列复合结构等离子共振吸收特性研究[J].光学学报,2005,25(12):1649-1654. 被引量:2
  • 2Le F, Brandl D W, Urzhumov Y A, et al. Metallic nanop- article arrays: a common substrate for both surface- en- hanced Raman scattering and surface-enhanced infrared ab- sorption[J]. ACS nano, 2008, 2(4) : 707-718.
  • 3Kudelski A, Wojtysiak S. Silica-Covered Silver and Gold Nanoresonators for Raman Analysis of Surfaces of Various Materials[J]. The Journal of Physical Chemistry C, 2012, 116(30) : 16167-16174.
  • 4Wang Y, Li S S, Yeh Y C, et al. Interactions between fluo- rescence of atomically layered graphene oxide and metallic nanoparticles [J ]. Nanoscale, 2013, 5 (4) : 1687-1691.
  • 5Ma R M, Oulton R F, Sorger V J, et al. Plasmon lasers: coherent light source at molecular scales [ J ]Ler & Pho- tonics Reviews, 2013, 7(1): 1-21.
  • 6van Exter M P, Tenner V T, van Beijnum F, et al. Surface plasmon dispersion in metal hole array lasers [ J ]. Optics express, 2013, 21 (22): 27422-27437.
  • 7Li Yan, Wang Hong, Feng Quanyou, et al. Gold nanoparti- cles inlaid TiO2 photoanodes: a superior candidate for high- efficiency dye-sensitized solar cells[ J]. Energy & Environ- mental Science, 2013, 6(7) : 2156-2165.
  • 8Shen Wenfei, Tang Jianguo, Yang Renqiang, et al. En- hanced efficiency of polymer solar cells by incorporated Ag SiO2 core shell nanopartieles in the active layer [ J]. RSC Advances, 2014, 4(9): 4379-4386.
  • 9Jang L W, Jeon D W, Kim M, et al. Investigation of Opti- cal and Structural Stability of Localized Surface Plasmon Me- diated Light-Emitting Diodes by Ag and Ag/SiO2 Nanoparti- cles [ J ]. Advanced Functional Materials, 2012, 22 ( 13 ) : 2728 -2734.
  • 10Raji V, Chakraborty M, Parikh P A. Catalytic perform- ance of silica-supported silver nanoparticles for liquid- phase oxidation of ethylbenzene [ J ]. Industrial & Engi- neering Chemistry Research, 2012, 51 (16): 5691- 5698.

二级参考文献17

  • 1王成伟,王建,李燕,刘维民,徐洮,孙小伟,力虎林.多孔阳极氧化铝薄膜光学常数的确定[J].物理学报,2005,54(1):439-444. 被引量:13
  • 2A. J. Yin, J. Li, W. Jian et al.. Fabrication of highly ordered metallic nanowire arrays by electrodeposition[J]. Appl. Phys.Lett. , 2001, 79(7): 1039-1041.
  • 3F. Niu, B. Cantor, P. J. Dobson. Mierostructure and optical properties of Si-Ag nanocomposite films prepared by co-sputtering[J]. Thin Solid Films, 1998, 320:184-191.
  • 4Jianyu Liang, Hope Chik, Jimmy Xu. Nonlithographic fabrication of lateral superlattices for nanometric electromagnetic-optic applications [J]. leee J. Selected Topics in Quantum Electronics, 2002, 8(5): 998-1008.
  • 5Weihua Xu, Takashi Kyotani, Bhabendra K. Pradhan et al..Synthesis of aligned carbon nanotubes with double coaxial structure of nitrogen-doped and undoped muhiwalls[J]. Adv.Mater. , 2003, 15(13): 1087-1090.
  • 6Shihui Ge, Xiao Ma, Cao Li et al.. Fabrication of electrodeposited Co nanowire arrays with perpendicular anisotropy[J]. J. Magnetism and Magnetic Materials, 2001,226-230:1867-1869.
  • 7Colby A. Foss, Michael J. Tierney, Charles R. Martin.Template synthesis of infrared-transparent metal microcylinders:comparision of optical properties with the predictions of effective medium theory[J]. J. Phys. Chem. , 1992, 96: 9001-9007.
  • 8Melissa S. Sander, Le-Shon Tan. Nanoparticle arrays on surfaces fabricated using anodic alumina films as templates[J].Adv. Funct. Mater. , 2003, 13(5): 393-197.
  • 9Jin-kyu Lee, Wecn-kyu KohK, Weon-sik Chae et al.. Novel synthesis of organic nanowires and their optical properties [J].Chem. Commun. , 2002, 21(2): 138-139.
  • 10Shoushan Fan, Michael G. Chapline, Nathan R. Franklinet al..Self-oriented regular arrays of carbon nanotubes and their field emission properties[J]. Science, 1999, 283(5401): 512-514.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部