期刊文献+

有机多孔聚合物CO_2捕集及分离性能的研究进展 被引量:11

Progress of CO_2 capture and separation by porous organic polymers
下载PDF
导出
摘要 有机多孔聚合物(porous organic polymers,POPs)是一类由有机构建单元连接而形成的新型多孔材料。由于其优异的物理化学稳定性以及CO2吸附能力,近年来有关POPs在CO2捕集和分离的研究成为一大研究热点。大量具有优异孔性质(比表面积和孔容)的POPs通过不同有机合成反应被成功地开发出来应用于CO2吸附分离过程。本文介绍了POPs材料的CO2捕集与分离性能的研究现状,总结了提高POPs材料CO2分离性能的合成策略,重点分析了可以通过功能化增强吸附剂与二氧化碳分子之间的相互作用,来提高材料的CO2分离能力的方法。 Porous organic polymers (POPs), a new type of porous materials constructed by organic building blocks, have attracted attention and shown significant potential for CO2 capture and separation due to their high physicochemical stability and excellent adsorption capacity. Numerous POPs with good porosity (both surface area and pore volume) are preparedvia different organic reactions. The progress of capture and separation of CO2 by POPs is reviewed. Several potential strategies like increasing isosteric heats between sorbent and CO2 molecules by chemical functionalization for enhancing CO2 separation performance are summarized.
出处 《化工学报》 EI CAS CSCD 北大核心 2014年第5期1553-1562,共10页 CIESC Journal
基金 国家重点基础研究发展计划项目(2013CB733501) 国家自然科学基金项目(91334203 21176066 51125032)~~
关键词 有机多孔聚合物 二氧化碳捕集 吸附 膜分离 选择性 porous organic polymers CO2 capture adsorption membrane based separation selectivity
  • 相关文献

参考文献37

  • 1D'Alessandro D M, Smit B, Long J R. Carbon dioxide capture: prospects for new materials[J]. Angewandte Chemie International Edition, 2010, 49(35): 6058-6082.
  • 2Dawson R, Cooper A I, Adams D J. Chemical functionalization strategies for carbon dioxide capture in microporous organic polymers[J]. Polymer International 2013, 62(3): 345-352.
  • 3Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herin Z R, Bae T H, Long J R. Carbon dioxide capture in metal-organic frameworks[J]. Chemical Reviews, 2011, 112(2): 724-781.
  • 4Wang Q, Luo J, Zhong Z, Borgna A. CO2 capture by solid adsorbents and their applications: current status and new trends[J]. Energy & Environmental Science, 2011, 4(1 ): 42-55.
  • 5Yang J, Li J, Wang W, Li L, Li J. Adsorption of CO2, CH4, and N2 on 8-, 10-, and 12-membered ring hydrophobic microporous high-silica zeolites: DDR, silicalitc-1, and beta[J]. Industrial & Engineering Chemistry Research, 2013, 52(50): 17856-17864.
  • 6Zhu X, Hillesheim P C, Mahurin S M, Wang C, Tian C, Brown S, Luo H, Veith G M, Han K S, Hagaman E W, Liu H, Dai S. Efficient CO2 capture by porous, nitrogen-doped carbonaceous adsorbents derived from task-specific ionic liquids[J]. ChemSusChem, 2012, 5(10): 1912-1917.
  • 7Hicks J C, Drese J H, Fauth D J, Gray M L, Qi G, Jones C W. Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly[J]. Journal of the American Chemical Society, 2008, 130(10): 2902-2903.
  • 8Yang Q, Liu D, Zhong C, Li J R. Development of computational methodologies for metal-organic frameworks and their application in gas separations[J]. Chemieal Reviews, 2013, 113(10): 8261-8323.
  • 9Xiang Z, Cao D. Porous covalent-organic materials: synthesis, clean energy application and design[J]. Journal of Materials Chemistry A, 2013, 1(8): 2691-2718.
  • 10Dawson R, Cooper A I, Adams D J. Nanoporous organic polymer networks[J]. Progress in Polymer Science, 2012, 37(4): 530-563.

同被引文献212

引证文献11

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部