期刊文献+

温度对产甲烷菌代谢途径和优势菌群结构的影响 被引量:32

Effect of temperature on methanogens metabolic pathway and structures of predominant bacteria
下载PDF
导出
摘要 产甲烷菌是严格厌氧的古菌,由其完成的产甲烷过程通常是厌氧微生物生化代谢中最重要的限速步骤。温度作为影响产甲烷菌的产甲烷速率重要因素,其变化会改变生物环境中的产甲烷的代谢途径和优势菌群分布。目前已知甲烷生物合成有3条途径:乙酸代谢途径、CO2还原途径和甲基营养型途径。理论上乙酸途径生成的甲烷约占甲烷生成总量的2/3,CO2还原产甲烷途径则约占1/3,甲基营养型途径只在少数情况下考虑其影响,例如盐湖。在低温条件下产甲烷菌以利用乙酸代谢为主;在中温条件下,产甲烷途径以乙酸代谢和H2/CO2还原一定比例存在;在高温和超高温条件下,以只利用CO2还原途径的菌群为主。 Methanogens are strictly anaerobic archaea, which not only take part in the methanogenesis procedure but also limit this process. Temperature plays a key role in the anaerobic fermentation. Temperature could not only directly alter the community structure and function of methanogenic archaea,but also affect the supply of substrates for methanogens,which in turn indirectly regulates the pathways of methanogenic archaea.There are three pathway for methanogenesis, and they are started from acetic acid, H2/CO2 and C-1 compound respetively. Acetoclastic methanogenesis accounts for about two-thirds of the total methane production globally, while hydrogenotrophic methanogenesis accounts for about one third. Methanol- and methyl amine-derived methanogensis is restricted in ocean and saline water. Acetoclastic methanogenesis is the predominant methanogenesis at a low temperature, and methane is produced by acetoclastic and hydrogenotrophic methanogenesis at a medium temperature, while methane is exclusively produced by hydrogenotrophic methanogenesis at a high or ultra-high temperature.
出处 《化工学报》 EI CAS CSCD 北大核心 2014年第5期1602-1606,共5页 CIESC Journal
基金 国家重点基础研究发展计划项目(2013CB733504) 国家自然科学基金项目(21307058 21207065) 江苏农业自主创新项目(CX(13)3045) 中国科学院环境与应用微生物重点实验室开放基金项目(KLCAS-2013-05)~~
关键词 甲烷 生物能源 代谢 产甲烷菌 温度 乙酸代谢途径 CO2还原产甲烷途径 methane bioenergy metabolism methanogens temperature acetoclastic methanogenesis hydrogenotrophic methanogenesis
  • 相关文献

参考文献30

  • 1刘畅,陆小华.我国碳减排模式探讨——CCS路线与生物甲烷路线的比较[J].化工学报,2013,64(1):7-10. 被引量:16
  • 2公维佳,李文哲,刘建禹.厌氧消化中的产甲烷菌研究进展[J].东北农业大学学报,2006,37(6):838-841. 被引量:45
  • 3单丽伟,冯贵颖,范三红.产甲烷菌研究进展[J].微生物学杂志,2003,23(6):42-46. 被引量:84
  • 4Oremland R S, Marsh L, Des Marais D J. Methanogenesis in Big Soda Lake, Nevada: an alkaline, moderately hypersaline desert lake[J]. AppL Environ. Microb., 1982,43:462-468.
  • 5Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments Ⅲ. FEMS Microbiology Ecology, 1999, 28(3): 193-202.
  • 6Karakashev D, Batstone D J, Trably E, et al. Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of methanosaetaceae [J]. Applied and Environmental Microbiology, 2006, 72(7): 5138-5141.
  • 7Conrad R. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal Ⅲ. Organic Geochemistry, 2005, 36(5): 739-752.
  • 8Avery G B, Shannon R D, White I R, et al. Controls on methane production in a tidal freshwater estuary and a peatland: methane production via acetate fermentation and CO2 reduction [J]. Biogeochemistry, 2003, 62:19-37.
  • 9Zuo Jiane, Xing WeL Department of environmental science and engineering[J]. Chin. J. Appl. Ecol., 2007, 18(9): 2127- 2132.
  • 10Akila G; Chandra T S. Performance of an UASB reactor treating synthetic wastewater at low temperature using cold adapted seed slurry Ill. Process Biochemisty, 2007, 42:466-471.

二级参考文献98

共引文献162

同被引文献571

引证文献32

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部