期刊文献+

葡萄糖氧化酶在修饰碳纳米管上的电化学 被引量:1

Electrochemistry of glucose oxidase on modified carbon nanotubes
下载PDF
导出
摘要 将葡萄糖氧化酶(GOx)分别固定在多壁碳纳米管(MWNT)、氨基化碳纳米管(AMWNTs)和羧基化碳纳米管(MWNTs-COOH)修饰的电极表面,电化学测量表明固定在羧基和氨基碳纳米管上的GOx式量电位基本没变,而峰电流得到了很大提高。尤其是氨基化碳纳米管上的GOx的峰电流是未功能化碳管上GOx的4倍多。进一步研究Nafion/GOx-AMWNTs/GC电极的电化学行为,发现固定在AMWNTs上的GOx可进行直接准可逆的氧化还原反应,而且固定在AMWNTs上的GOx有良好的稳定性。氨基改性碳纳米管电极载体材料有望显著提高GOx生物燃料电池性能。 Glucose oxidase (GOx) was immobilized on the electrode surface of multi-walled carbon nanotubes, amino functionalized carbon nanotubes (AMWNTs)and carboxyl functionalized carbon nanotubes (MWNTs-COOH). Electrochemical measurements indicated that the formal potentials of GOx immobilized on AMWNTs and MWNTs-COOH did not change, but their peak currents were improved. The peak current of GOx immobilized on AMWNTs was four times larger than that immobilized on MWNTs. The electrochemistry behavior of Nafion/GOx-AMWNTs/GC electrode were further characterized. The results indicated that GOx immobilized on AMWNTs could undergo a direct quasi-reversible electrochemical reaction and show good stability. Amino-functionalized electrodes could significantly improve the performance of GOx-based biofuel cells.
出处 《化工学报》 EI CAS CSCD 北大核心 2014年第5期1771-1776,共6页 CIESC Journal
基金 国家重点基础研究发展计划项目(2013CB733500) 国家自然科学基金项目(21376089 91334202) 中央高校基本科研业务费项目(SCUT-2013ZM0073)~~
关键词 固定化 电化学 蛋白质 吸附 生物燃料电池 enzyme immobilization electrochemistry protein adsorption biofuel cell
  • 相关文献

参考文献2

二级参考文献117

  • 1於蕾,何明,陆小华,冯新.介孔TiO_2的结构分析[J].南京工业大学学报(自然科学版),2005,27(2):81-84. 被引量:5
  • 2陈新丽,李伟善.超级电容器电极材料的研究现状与发展[J].广东化工,2006,33(7):52-54. 被引量:7
  • 3刘黎明,林志东,杨培志.V_2O_5复合电极材料的制备与表征[J].电子元件与材料,2006,25(9):28-30. 被引量:3
  • 4Richards J, Le N F, Beretta L, et al. Ann. N. Y. Acad. Sci., 2002, 975(1): 91-100.
  • 5Baird C L, Myszka D G. J. Mol. Recog., 2001, 14(2) : 261-268.
  • 6Szamocki R, Velichko A, Kuhn A, et al. Electrochem. Commun., 2007, 9(8): 2121-2127.
  • 7Nakanishi K, Sakiyama T, Imamura K. J. Biosci. Bioeng., 2001, 91(3) : 233-244.
  • 8Rusmini F, Zhong Z Y, Jan F. J. Biomacromol., 2007, 8(6): 1775-1789.
  • 9Rao S V, Anderson K W, Bachas L G. Microchem. Acta, 1998, 128(3/4) : 127-143.
  • 10Onda M, Lvov Y, Afiga K. J. Ferment. Bioeng., 1996, 82(5) : 502-506.

共引文献8

同被引文献25

  • 1No H K, Park N Y, Lee S H, Meyers S P. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights [J]. International Journal of Food Microbiology, 2002, 74 (1/2): 65-72.
  • 2Baran T, Mente? A, Arslan H. Synthesis and characterization of water soluble O-carboxymethyl chitosan Schiff bases and Cu(Ⅱ) complexes [J]. International Journal of Biological Macromolecules, 2015, 72: 94-103.
  • 3Hu H, Xin J H, Hu H, Chan A, He L. Glutaraldehyde-chitosan and poly (vinyl alcohol) blends, and fluorescence of their nano-silica composite films [J]. Carbohydrate Polymers, 2013, 91 (1): 305-313.
  • 4Bulwan M, Wójcik K, Zapotoczny S, Nowakowska M. Chitosan-based ultrathin films as antifouling, anticoagulant and antibacterial protective coatings [J]. Journal of Biomaterials Science, 2012, 23: 1963-1980.
  • 5Heuser M, Cardenas G. Chitosan-copper paint types as antifouling [J]. Journal of the Chilean Chemical Society, 2014, 59 (2): 2415-2419.
  • 6Feng Y, Lin X, Li H, He L, Sridhar T, Suresh A K, Bellare J, Wang H. Synthesis and characterization of chitosan-grafted BPPO ultrafiltration composite membranes with enhanced antifouling and antibacterial properties [J]. Industrial & Engineering Chemistry Research, 2014, 53: 14974-14981.
  • 7Pelletier E, Bonnet C, Lemarchand K. Biofouling growth in cold estuarine waters and evaluation of some chitosan and copper anti-fouling paints [J]. International Journal of Molecular Sciences, 2009, 10 (7): 3209-3223.
  • 8Kumar R, Isloor A M, Ismail A F, Rashidc S A, Matsuura T. Polysulfone-chitosan blend ultrafiltration membranes: preparation, characterization, permeation and antifouling properties [J]. RSC Advances, 2013, 3: 7855-7861.
  • 9Wang L N, Jia X L, Li Y F, Yang F, Zhang L Q, Liu L P, Ren X, Yang H T. Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles [J]. Journal of Materials Chemistry A, 2014, 2: 14940-14946.
  • 10Aryaei A, Jayatissa A H, Jayasuriya A C. Mechanical and biological properties of chitosan/carbon nanotube nanocomposite films [J]. Journal of Biomedical Materials Research Part A, 2014, 102: 2704-2712.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部