期刊文献+

基于符号相对熵的Logistic混沌系统时间不可逆性分析 被引量:8

Time Irreversibility Analysis of Logistic Chaos System Based on Symbolic Relative Entropy
下载PDF
导出
摘要 该文结合Logistic混沌系统特性随参数m变化的关系,以及相对熵能够反映系统远离平衡状态程度的特点,提出一种基于符号相对熵估计Logistic混沌系统特性的新方法。从仿真结果得到,Logistic混沌系统存在时间不可逆性,并随着参数m的增大而逐渐增强,与初值0x无关,经分析推理得到一种新的可量化的非线性动力学行为指标,为深入了解Logistic混沌特性和混沌控制提供理论依据。 Considering that the characteristic of Logistic chaos system varies in the relationship of the parameter m , and the feature of that the relative entropy reflects the lack of equilibrium, this paper proposes a new method to estimate the characteristic of Logistic chaos system based on symbolic relative entropy. Numerical simulations prove that, Logistic chaos system possesses the property of time irreversibility which increases with parameter m and is irrelevant with initial value x 0 . Accordingly, a novel quantifiable nonlinear dynamical behavior index is obtained, which provides the theoretical basis for understanding Logistic chaos characteristic and chaos control
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第5期1242-1246,共5页 Journal of Electronics & Information Technology
关键词 混沌系统 Logistic系统 符号时间序列 相对熵 时间不可逆 Chaos system Logistic system Symbolic time series Relative entropy Time irreversibility
  • 相关文献

参考文献21

  • 1Zhuang Qun-tao,Gao Xun,Ouyang Qi,et al.Dynamical topology and statistical properties of spatiotemporal chaos[J]Chaos,2012,22(4):043133.
  • 2Wang Wen-xu,Yang Rui,Lai Ying-cheng,et al.Predicting catastrophes in nonlinear dynamical systems by compressive sensing[J].Physical Review Letters,2011,106(4):154101-1-154101-4.
  • 3郑建炜,王万良,蒋一波,陈伟杰.概率型稀疏核Logistic多元分类机[J].电子与信息学报,2011,33(7):1632-1638. 被引量:3
  • 4侯凤贞,黄晓林,庄建军,霍铖宇,宁新宝.多尺度策略和替代数据检验——HRV时间不可逆性分析的两个要素[J].物理学报,2012,61(22):127-132. 被引量:1
  • 5Giaouris D,Banerjee S,Imrayed O,et al.Complex interaction between tori and onset of three-frequency quasi-periodicity in a current mode controlled boost converter[J].IEEE Transactions on Circuits,and Systems-I,2012,59(1):207-214.
  • 6Laugesen J L,Mosekilde E,and Zhusubaliyev Z T.Bifurcation structure of the C-type period-doubling transition[J].Physica D:Nonlinear Phenomena,2012,241(5)488-496.
  • 7Chen Yan-feng,Tse C K,Qiu Shui-sheng,et al.Coexisting fast-scale and slow-scale instability in current-mode controlled DC/DC converters:analysis,simulation and experimental results[J].IEEE Transactions on Circuits and @stems-I,2008,55(11):3335-3347.
  • 8De S,Dutta P S,and Banerjee S.Tours destruction in a nonsmooth noninvertible map[J].Physics Letters A,2012,376(4):400-406.
  • 9Yao Tian-liang,Liu Hai-feng,Xu Jian-liang,et al.Estimating the largest lyapunov exponent and noise level from chaotic time series[J].Chaos,2012,22(3):033102.
  • 10Kapat S,Patra A,and Banerjee S.Achieving monotonic variation of spectral composition in DC-DC converters using pulse skipping modulation[J].IEEE Transactions on Circuits and Systems-I,2011,58(8):1958-1966.

二级参考文献29

  • 1肖方红,阎桂荣,韩宇航.混沌伪随机序列复杂度分析的符号动力学方法[J].物理学报,2004,53(9):2877-2881. 被引量:26
  • 2唐驾时,欧阳克俭.logistic模型的倍周期分岔控制[J].物理学报,2006,55(9):4437-4441. 被引量:17
  • 3盛利元,闻姜,曹莉凌,肖燕予.TD-ERCS混沌系统的差分分析[J].物理学报,2007,56(1):78-83. 被引量:11
  • 4Huang F, Jiang Z P, and Zhang S G, et al.. Reliability evaluation of wireless sensor networks using logistic regression [C]. ICCMC, Shenzhen, 2010: 334-338.
  • 5Li J, Bioucas-Dias J M, and Plaza A. Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(11): 4085-4098.
  • 6Birkenes O, Matsui T, and Tanabe K, et al.. Penalized logistic regression with HMM log-likelihood regressors for speech recognition [J]; IEEE Transactions on Audio, Speech and Language Processing, 2010, 18(6): 1440-1454.
  • 7Roth V. Probabilistic discriminative kernel classifiers for multi-class problems [C]. Lecture Notes In Computer Science. London, UK, Springer-Verlag, 2001, LNCS 2191: 246-266.
  • 8Karsmakers P, Pelekmans K, and Suykens J. Multi-class kernel logistic regression: a fixed-size implementation [C]. Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, 2007: 1756-1761.
  • 9Karsmakers P, Pelckmans K, and Suykens J, et al.. Fixed-size kernel logistic regression for phoneme classification[C]. Proc. of the Interspeeeh (INTERSPEECH). 8th Annual Conference of the International Speech Communication Association, Antwerp, Belgium, 2007: 78-81.
  • 10Zhu J and Hastie T. Kernel logistic regression and the import vector machine [J]. Journal of Computational and Graphical Statistics, 2005, 14(1): 185-205.

共引文献72

同被引文献81

引证文献8

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部