期刊文献+

近红外反射光谱技术快速测定小麦中必需氨基酸含量的研究 被引量:8

Study on Rapid Determination of Essential Amino Acid Contents in Wheat by Near-Infrared Reflectance Spectroscopy(NIRS)
原文传递
导出
摘要 试验探讨了近红外反射光谱快速测定小麦中10种必需氨基酸含量的可行性,并考察了不同光谱预处理方法和波长范围对近红外定标效果的影响。从全国范围内收集450个不同品种和产地的小麦样品.使用改进偏最小二乘法,采取77种导数和去散射光谱预处理方法建立近红外定标模型。结果表明:对于大多数氨基酸。二阶导数产生了较好的预测效果;各氨基酸定标模型建立的最佳波长范围并不一致。除蛋氨酸和色氨酸外,其余氨基酸均取得较好定标效果,其RSQd、(1-VR)和RPD。分别为0.84—0.94、0.77—0.923和2.09~3.68,且这些定标模型具有较好的预测能力,其RSQv和RPDv分别为0.77-0.92和2.14~3.64。除色氨酸外,近红外光谱法对小麦中必需氨基酸的预测效果优于粗蛋白回归法。 The possibility of using near-infrared refl ectance essential amino acid contents in wheat and the influence of methods of spectrum on the NIR calibration were investigated in spectroscopy (NIRS) for rapid determination of 10 different spectral ranges and different pre-treatment the present study. A total of 450 wheat samples with different varieties and planting locations were collected in China over a three years period. Calibrations were performed by modified partial least squares (MPLS) algorithm and 77 different derivatives plus scatter correction spectral pretreatments. The results showed that the second derivative mathematical treatment gave the best predictive performance for most amino acids. The best spectral range of different amino acid calibration model was not consistent. Except for methionine and tryptophan, relatively good calibration results were obtained for the remaining 8 amino acids, their RSQ~, (1-VR) and RPDcv ranged from 0.84 to 0.94, 0.77 to 0.93, and 2.09 to 3.68, respectively, and the calibration models for them also had relatively high predictive ability, their RSQv and RPDv ranged from 0.77 to 0.92 and 2.14 to 3.64, respectively. Except for tryptophan, compared to the linear regression results of amino acid contents relative to crude protein, NIRS has a better predictive performance.
出处 《中国畜牧杂志》 CAS 北大核心 2014年第9期50-55,共6页 Chinese Journal of Animal Science
基金 国家公益性行业(农业)科研专项(200903006) 国家科技支撑计划项目(2011BAD26B0404)
关键词 近红外反射光谱 小麦 必需氨基酸 near-infrared reflectance spectroscopy wheat essential amino acid
  • 相关文献

参考文献18

  • 1Givens D I, De Boever J L, Deaville E R. The principles, practices and some future applications of near infrared spectroscopy for predicting the nutritive value of foods for animals and humans[J]. Nutr Res Rev, 1997, 10(1): 83-114.
  • 2de Boever J L, Cottyn B G, Vanacker J M, et ol. The use of NIRS to predict the chemical composition and the energy value of compound feeds for cattle [J]. Anim Feed Sci Tech, 1995, 51 (3): 243-253.
  • 3Liu X, Han L. Evaluation of near-infrared reflectance spectroscopy (NIRS) for predicting chemical composition of straw silage[J]. J Anim Feed Sci, 2006, 15: 329-336.
  • 4Qiao Y, van Kempen T A T G. Technical note: comparison of raman, mid, and near infrared spectroscopy for predicting the aminoacidcontentinanimalmeals [J].JAnimSci,2004,82(9): 2596- 2600.
  • 5Daszykowski M, Wrobel M S, Czamik-Matusewicz H, et al. Near -infrared reflectance spectroscopy and multivariate calibration techniques applied to modelling the crude protein, fiber, and fat content in rapeseed meal[J]. Analyst, 2008, 133: 1523- 1531.
  • 6王卫东,谷运红,秦广雍,霍裕平.近红外漫反射光谱法测定整粒小麦单株蛋白质含量[J].光谱学与光谱分析,2007,27(4):697-701. 被引量:26
  • 7Gatius F, Lloveras J, Ferran J, et al. Prediction of crude protein and classification of the growth stage of wheat plant samples from NIR spectra[J]. J Argic Sci, 2004, 142(5): 517-524.
  • 8Garnsworthy P C, Wiseman J, Fegeros K. Prediction of chemical, nutritive and agronomic characteristics of wheat by near infrared spectroscopy[J]. J Argic Sci, 2000, 135(4): 409-417.
  • 9Williams P C, Preston K R, Norris K H, et al. Deterroination of amino acids in wheat and barley by near-infrared reflectance spectroscopy[J]. J Food Sci, 1984, 49(1): 17-20.
  • 10Fontaine J, Schirmer B, Horr J. Near-infrared reflectance spectroscopy (NIRS) enables the fast and accurate prediction of essential amino acid contents. 2. Results for wheat, corn, triticale, wheat, bran/middlings, rice bran, and sorghum [J]. J Agric Food Chem, 2002, 50:3902-3911.

二级参考文献22

共引文献39

同被引文献106

引证文献8

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部