期刊文献+

复合泊松风险模型中观察间隔为均匀分布时的贴现罚金函数 被引量:1

Discounted penalty function of compound Poisson risk model when observation interval being uniform distribution
下载PDF
导出
摘要 考虑审核时间间隔为均匀分布的期望贴现罚金函数,利用全概率公式和拉普拉斯变换,给出贴现罚金函数满足的积分微分方程以及更新方程.针对指数索赔的情况给出了期望贴现罚金函数的计算过程. The discounted penalty function of compound Poisson risk model is studied when observation interval is uniform distribution. The renewal equation and integral differential equation for the discounted penalty function are obtained by using total probability formula and Laplace transform. The calculation process of the discounted penalty function is given for the case of exponention claims.
出处 《天津师范大学学报(自然科学版)》 CAS 2014年第2期12-15,共4页 Journal of Tianjin Normal University:Natural Science Edition
关键词 复合泊松风险模型 均匀分布 贴现罚金函数 compound Poisson risk model uniform distribution discounted penalty function
  • 相关文献

参考文献8

二级参考文献42

  • 1苏淳,唐启鹤,江涛.A contribution to large deviations for heavy-tailed random sums[J].Science China Mathematics,2001,44(4):438-444. 被引量:27
  • 2张相虎,陈贵磊.带干扰的保费收取次数为Poisson过程的破产概率[J].山东科技大学学报(自然科学版),2005,24(1):98-100. 被引量:6
  • 3方世祖,罗建华.双复合Poisson风险模型[J].纯粹数学与应用数学,2006,22(2):271-278. 被引量:37
  • 4Asmussen S. Ruin probabilities[M]. Singapore: World Scientific Publishing Co Pte Inc, 2000.
  • 5Gerber H U, Shiu E S W. On optimal dividends strategies in the compound Poisson model[J]. North American Actuarial Journal, 2006, 10(2): 76-93.
  • 6Lin X S, Pavlova K P. The compound Poisson risk model with a threshold dividend strategy[J]. Insurance: Mathematics and Economics, 2006, 38: 57-80.
  • 7Gerber H U, Shiu E S W. On the time value of ruin[J]. North American Actuarial Journal, 1998, 2(2) : 48 - 78.
  • 8Grandell J C. Aspects of Risk Theory[M]. New York: Springer Verlag. 1991:4-25.
  • 9Gerber H U. An Extension of the Renewal Qnation and its Application in the Collective theory of risk[J].Skandinavisk Aktuarietidskrift,1970: 205-210.
  • 10Dufresne F. Gerber H U. Risk Theory for the Compound Poisson Process that is Perturbed by Diffusion[J] .Insurance: Mathematics, anti Economics, 1991 ( 10 ):51-59.

共引文献6

同被引文献12

  • 1De Finetti B. Su un' impostazione alternativa della teoria col- lettiva del rischio [ J ]. Transactions of the XVth Interna- tional Congress of Actuaries, 1957,2 ( 1 ) :433.
  • 2Albrecher H,Thonhauser S. Optimal dividend strategies for a risk process under force of interest [ J ]. Insurance : Mathe- matics and Economics ,2008,43 ( 1 ) : 134.
  • 3Fang Y,Qu Z. Optimal dividend and capital injection strate- gies for a risk model under force of interest[J]. Mathemati- cal Problems in Engineering, 2013,2013:110.
  • 4Fang Y, Wu R. Optimal dividend strategy in the compound Poisson model with constant interest [ J ]. Stochastic Mod- els ,2007,23 ( 1 ) : 149.
  • 5Gao S, Liu Z. The perturbed compound Poisson risk model with constant interest and a threshold dividend strategy [J]. Journal of Computational and Applied Mathematics, 2010,233(9) :2181.
  • 6Cai J, Yang H. Ruin in the perturbed compound Poisson risk process under interest force [ J ]. Advances in Applied Probability, 2005,2005 : 819 - 835.
  • 7Lin X S, Pavlova K P. The compound Poisson risk model with a threshold dividend strategy [ J ]. Insurance : Mathe- matics and Economics, 2006,38 ( 1 ) :57.
  • 8Scheer N,Schmidli H. Optimal dividend strategies in a Cra- mer-Lundberg model with capital injections and administra- tion costs [ J ]. European Actuarial Journal, 2011, 1 (1) :57.
  • 9Zhu J. Optimal dividend control for a generalized risk model with investment incomes and debit interest [ J ]. Scandina- vian Actuarial Journal, 2013 (2) :140.
  • 10Avanzi B, Shen J, Wong B. Optimal dividends and capital injections in the dual model with diffusion[J]. Astin Bul- letin,2011,41 (2) :611.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部