期刊文献+

基于Chirplet变换的变频视觉诱发电位脑-机接口研究 被引量:3

Chirp Stimuli Visual Evoked Potential Based Brain-Computer Interface by Chirplet Transform Algorithm
下载PDF
导出
摘要 脑-机接口(brain-computer interface,BCI)是在大脑与外部设备间建立一个直接的信息交流通路,它无须依赖外周神经肌肉系统而仅通过脑电信号特征提取与模式识别来实现思维表达或指令操作.变频视觉诱发电位(chirp stimuli visual evoked potential,Chirp-VEP)是最近提出的一种脑电诱发新模式,可作为BCI控制信号,极富应用潜力.然而Chirp-VEP的诱发条件、信号处理、特征提取方法等都缺乏充分研究.本文采用不同起始频率和chirp调频率进行了Chirp-VEP诱发实验,利用Chirplet变换(chirplet transform,CT)等4种时频分析方法提取了ChirpVEP信号特征.研究结果表明,相较于其他时频分析方法,CT可获得更高的VEP信噪比与正确识别率.在8名受试者参加的在线BCI测试中,Chirp-VEP的总平均正确识别率高达97.8%,进一步验证了Chirp-VEP应用于BCI控制的潜力. A brain-computer interface (BCI) is to set up a direct communication pathway between the brain and an external device. It realizes the human thinking expression or command operation through feature extraction and pattern recognition of electroeneephalography(EEG) rather than relying on the per- pheral nerve muscle system. The newly proposed chirp stimuli visual evoked potential(Chirp-VEP) can be used as a most promising BCI control signal. However, the inducing conditions, signal processing, feature extraction methods of Chirp-VEP need comprehensive study. Different initial frequencies and chirp rates were adopted to evoke the Chirp-VEP in this paper. Four kinds of time-frequency analysis methods, such as chirplet transform(CT) and so on were used to extract the time-frequency characteris- tics of Chirp-VEP signals. The results show that compared with the other three methods, CT can obtain higher VEP signal-to-noise ratio and accuracy recognition rate. Eight subjects participated in the online BCI testing, the total average accuracy recognition rate was up to 97.8%. It further verifies the potential of Chirp-VEP application in BCI control.
出处 《纳米技术与精密工程》 CAS CSCD 2014年第3期157-161,共5页 Nanotechnology and Precision Engineering
基金 国家自然科学基金资助项目(81222021 31271062 61172008 81171423 51007063) 国家科技支撑计划资助项目(2012BAI34B02) 教育部新世纪优秀人才支持计划资助项目(NCET-10-0618)
关键词 脑-机接口 变频视觉诱发电位 Chirplet变换 支持向量机 brian-computer interface chirp stimuli visual evoked potential chirplet transform supportvector machine
  • 相关文献

参考文献12

  • 1Nicolas-Alonso L F, Gomez-Gil J. Brain computer inter- faces, a review[J]. Sensors, 2012, 12(2): 1211-1279.
  • 2Wolpaw J R, Birbaumer N, McFarland D J, et al. Brain- computer interfaces for communication and control[ J]. Clin- ical Neuro-Physiology, 2002, 113 (6) : 767-791.
  • 3万柏坤,周仲兴,刘亚伟,程龙龙,明东,綦宏志,朱誉环.基于ICA与PSD的ERD/ERS信号检测[J].天津大学学报,2008,41(11):1383-1390. 被引量:6
  • 4万柏坤,高扬,赵丽,綦宏志.脑-机接口:大脑对外信息交流的新途径[J].国外医学(生物医学工程分册),2005,28(1):4-9. 被引量:22
  • 5张峰 徐光华 谢俊 等.稳态视觉诱发电位的研究与展望.仪器仪表学报,2010,31(8):156-165.
  • 6Vialatte F B, Maurice M, Dauwels J, et al. Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives [ J ]. Progress in Neurobiology, 2010, 90 (4) : 418-438.
  • 7Morgan S T, Hansen J C,Hillyard S A. Selective attention to stimulus location modulates the steady-state visual evoked potential[ J ]. Proceedings of the National Academy of Sci- ences, 1996, 93(10) : 4770-4774.
  • 8Tu T, Xin Y, Gao X, et al. Chirp-modulated visual evoked potential as a generalization of steady state visual evoked po- tential[ J]. Journal of Neural Engineering, 2012, 9( 1 ) : 1- 11.
  • 9Friman O, Volosyak I, Graser A. Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces[J]. IEEE Tram Biomed, 2007, 54(4): 742- 750.
  • 10Baraniuk R G, Jones D L. Wigner-based formulation of the chirplet transform[ J]. IEEE Transactions on Signal Process- ing, 1996, 44(12) : 3129-3135.

二级参考文献42

  • 1万柏坤,高扬,赵丽,綦宏志.脑-机接口:大脑对外信息交流的新途径[J].国外医学(生物医学工程分册),2005,28(1):4-9. 被引量:22
  • 2Pfurtscheller G, Neuper C, Schlogl A, et al. Separability of EEG signals recorded during right and left motor imaginary using adaptive autoregressive parameters[J].IEEE Trans Rehabil Eng, 1998,6 : 316-325.
  • 3Wolpaw J R, McFarland D J, Vaughan T M, et al. Braincomputer interface research at the Wadsworth Center [J]. IEEE Trans Rehabil Eng, 2000, 8 : 222-225.
  • 4Pfurtscheller G, Lopes da Silva F H. Event-related EEG/ MEG synchronization and desychronization:Basic principles [J]. Clin Neurophysiol, 1999, 110: 1842-1857.
  • 5Bell A J, Sejnowski T J. An information maximization approach to blind separation and blind deconvolution [J]. Neural Computation, 1995,7 ( 6 ) : 1129-1159.
  • 6Lee T W, Girolami M, Sejnewski T J. Independent com- ponent analysis using an extended infomax algorithm for mixed Subgaussian and Supergaussian sources [J].Neural Computation, 1999, 11 (2): 409-433.
  • 7Pfurtscheller G. BCI classification, competition.2005. [EB/OL].http ://ida. first, fraunhofer.de/projects/bci/ competition_iii/, 2005-11.
  • 8Kanehiro F, Fujiwara K, Hirukawa H, et al. Getting up motion planning using Mahalanobis distance [C]//IEEE International Conference on Robotics and Automation. Rome, 2007 : 2540-2545.
  • 9Wolpaw JR, Birbaumer N, Heetderks WJ, et al. Brain-computer interface technology: A review of the first intemation mecting[J ]. IEEE Trans Rehabil Eng, 2000, 8(2): 164-173.
  • 10Wolpaw JR, Birbaumer N, McFarland DJ, et al. Brain-computer interfaces for communication and control [J]. Clin Neurophysiol, 2002,113: 767-791.

共引文献53

同被引文献83

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部