期刊文献+

带形上分枝随机游动中λ→(x,n)的均值

THE EXPECTATION OF λ→(x,n) FOR A BRANCHING RANDOM WALK ON A STRIP
下载PDF
导出
摘要 考虑带形上的分枝随机游动,假定每代粒子均以相同的概率分布独立产生后代的同时,每个粒子又以带形上的随机游动运动.通过合理构造变量和递推归纳的方法,得到了时间n位于第x列的粒子数λ→(x,n)的均值. Consider a model of branching random walk on a strip, where the particles reproduce in a Galton-Watson process with a fixed reproduction law, but move as a random walk on a strip. By the method of recursion, we obtain the expectation of →/λ(x,n)which is the number of particles located in layer x at time n.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期120-123,共4页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目(10721091)
关键词 带形上的随机游动 分枝随机游动 Galton-Watson过程 random walk on a strip branching random walk Galton-Watson process
  • 相关文献

参考文献9

  • 1Bolthausen E, Goldsheid I. Recurrence and transience of random walks in random environments on a strip Cornmun[J]. Math Phys, 2000,214: 429.
  • 2Goldsheid I. Linear and sub-linear growth and the CLT for hitting times of a random walk in random environments on a strip[J]. Probab Theory Relat Fields, 2008,141: 471.
  • 3Hong W M, Zhang M J. Branching structure for the transient random walk in a random environment on a strip and its application[EB/OL], http:// arxiv, orglabs/1204. 1104.
  • 4Roitershtein A. Transient random walks on a strip in arandom environment[J]. Ann Prob, 2008,36 : 2354.
  • 5Asmussen S, Kaplan N. Branching random walks [J]. Stoch Process Appl, 1976, 4:1.
  • 6Biggins J D. The central limit theorem for the supercritical branching random walk and related results [J]. Stoch Process Appl,1990, 34:255.
  • 7Kaplan N, Asmussen S. Branching random walks Ⅱ[J]. Stoch Process Appl, 1976,4 : 15.
  • 8Revesz P. Random walks of infinitely many particles [M]. New Jersey: World Scientific Publishing Co Inc, River Edge, 1994.
  • 9Devulder A. The speed of a branching system of random walks in random environment [J]. Stat Probabil Lett, 2007,77 : 1712.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部