期刊文献+

酿酒酵母细胞表达异源萜类化合物的研究进展 被引量:6

Progress of heterologous expression of terpenes in Saccharomyces cerevisiae
下载PDF
导出
摘要 萜类化合物具有可观的经济价值,但是目前的生产过程复杂、产量低。酿酒酵母甲羟戊酸途径为萜类化合物的合成提供直接前体,因此酿酒酵母细胞具有合成异源萜类化合物的天然优势。对酿酒酵母甲羟戊酸途径的清晰认识是对其进行有效利用的基础,本文从代谢途径、关键酶的特点和全局调控机制3个方面对该途径进行了介绍。从代谢途径的构建和优化、模块与底盘细胞的适配、模块构建及组装方式的角度概述了酿酒酵母细胞异源合成单萜、倍半烯萜、二萜、三萜类化合物的研究进展。指出实现酿酒酵母高效合成萜类化合物所需要解决的基础问题是对酿酒酵母甲羟戊酸途径进行更为全面了解和对萜类化合物的天然代谢途径进行明确解析;另外,合成生物学的进一步发展也将为此提供应用基础。 Terpene compounds have great economical values,but their production is complex and productivity is low. Mevalonate pathway in Saccharomyces cerevisiae provides precursors for terpenes,which is the natural advantage to produce terpenes heterologously. The metabolism pathway, key enzymes and global regulatory mechanisms in this pathway were elaborated. And the advances in this pathway in synthesis of monoterpenes,semiterpenes,diterpene,and triterpene are summarized from establishment and optimization of special metabolism pathway,adaption between modules and chassis cells , methods of module construction and assembly. To obtain efficiently engineered Saccharomyces cerevisiae,terpene biosynthic pathway and mevalonate pathway of Saccharomyces cerevisiae should be known clearly,and the advance in synthesis biology will be the application foundation.
作者 张艳 卢文玉
出处 《化工进展》 EI CAS CSCD 北大核心 2014年第5期1265-1270,共6页 Chemical Industry and Engineering Progress
基金 国家重点基础研究发展计划项目(2012CB721105)
关键词 酿酒酵母 甲羟戊酸 萜类 代谢 分子生物学 生物技术 Saccharomyces cerevisiae mevalonate terpene metabolism molecular biology biotechnology
  • 相关文献

参考文献40

  • 1Misawa N. Pathway engineering for functional isoprenoids[J]. Curr. Opin. BiotechnoL, 2011, 22 (5) : 627-633.
  • 2Chen F, Tholl D, Bohlmann J, et al. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom[J]. The Plant Journal, 2011, 66 (1): 212-229.
  • 3杨金玲,高丽丽,朱平.人参皂苷生物合成研究进展[J].药学学报,2013,48(2):170-178. 被引量:68
  • 4Van Bogaert I N, Saerens K, De Muynck C, et al. Microbial production and application of sophorolipids[J]. Applied microbiology andBiotechnology, 2007, 76 (1): 23-34.
  • 5Lamacka M, Sajbidor J. Ergosterol determination in Saccharomyces cerevisiae. Comparison of different methods[J]. Biotechnol. Tech., 1997, 11 (10) : 723-725.
  • 6Veen M, Stahl U, Lang C. Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae[J]. FEMS Yeast Res., 2003, 4 (1) : 87-95.
  • 7Lee Adair W, Cafmeyer N. Characterization of the Saccharomyces cerevisiae cis-prenyltransferase required for dolichyl phosphate biosynthesis[J]. Archives of Biochemistry and Biophysics, 1987, 259 (2) : 589-596.
  • 8Bloch K E. Sterol, structure and membrane function[J]. Crit. Rev. Biochem. Mol. Biol., 1983, 14 ( 1 ) : 47-92.
  • 9Zweytick D, Leitner E, Kohlwein S D, et al. Contribution of Arelp and Are2p to steryl ester synthesis in the yeast Saccharomyces cerevisiae[J].Eur. J. Biochem., 2000, 267 (4): 1075-1082.
  • 10Panda T, Devi V A. Regulation and degradation of HMGCo-A reductase[J]. Appl. Microbiol. Biotechnol., 2004, 66 (2) : 143-152.

二级参考文献21

  • 1Huang Q.L.,Roessner C.A.,Croteau R.,Scott A.I.,Bioorg.& Med.Chem.,2001,9(9),2237-2242.
  • 2Ajikumar P.K.,Xiao W.H.,Tyo K.E.J.,Wang Y.,Simeon F.,Leonard E.,Mucha O.,Phon T.H.,Pfeifer B.,Stephanopoulos G.,Science,2010,330(6000),70-74.
  • 3Engels B.,Dahm P.,Jennewein S.,Metabolic Engineering,2008,10(3),201-206.
  • 4Eisenreich W.,Rohdich F.,Bacher A.,Trends in Plant Science,2001,6(2),78-84.
  • 5Jiang Y.,Proteau P.,Poulter D.,Novick S.F.,J.Bio.Chem.,1995,270(37),21793-21799.
  • 6Jennings S.M.,Tsay Y.H.,Fisch T.M.,Robinson G.W.,Proc.Natl.Acad.Sci.USA,1991,88(14),6038-6042.
  • 7Hampton R.,Dimster-Denk D.,Rine J.,Trends in Biochemical Sciences,1996,21(4),140-145.
  • 8Polakowski T.,Stahl U.,Lang C.,Appl.Microbio.Biotec.,1998,49(1),66-71.
  • 9Zhou Y.J.,Gao W.,Rong Q.X.,Jin G.J.,Chu H.Y.,Liu W.J.,Yang W.,Zhu Z.W.,Li G.H.,Zhu G.F.,Huang L.Q.,Zhao Z.B.,J.Am.Chem.Soc.,2012,134(6),3234-3241.
  • 10Dai Z.B.,Liu Y.,Huang L.Q.,Zhang X.L.,Biotech.Bioeng.,2012,109(11),2845-2853.

共引文献70

同被引文献56

  • 1陈建,赵德刚.植物萜类生物合成相关酶类及其编码基因的研究进展[J].分子植物育种,2004,2(6):757-764. 被引量:49
  • 2余鑫平,冯俊涛,刘晓明,庄世宏,张兴.小花假泽兰茎叶中杀菌活性成分的研究[J].西北植物学报,2006,26(5):1001-1006. 被引量:17
  • 3DAMBOLENA J S, LOPEZ A G, CANEPA M C, et al. Inhibitory effect of cyclic terpenes (limonene, menthol, menthone and thymol) on Fusari- urn verticillioides MRC 826 growth and fumonisin B1 biosynthesis [J]. Toxicon, 2008, 51(1): 37-44.
  • 4STEINGASS C B, CARLE R, SCHMARR H G. Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: I. Characterization &pineapple aroma compounds by com- prehensive two-dimensional gas chromatography-mass spectrometry[J]. Anal Bioanal Chem, 2015, 407(9): 1391-2608.
  • 5RUIZ-GARCIA L, HELLfN P, FLORES P, et al. Prediction of Muscat aroma in table grape by analysis of rose oxide[J]. Food Chem, 2014, 154(2): 151-157.
  • 6CROTEAU R, MIYAZAKI JH, WHEELER CJ. Monoterpene biosyn- thesis: mechanistic evaluation of the geranyl pyrophosphate: (-)-endo- fenchol cyclase from fennel (Foeniculum vulgate)[J]. Archs Biochem Biophys, 1989, 269(2): 507-516.
  • 7BASER K H C, DEMIRCI F. Chemistry of essential oils[M]. Berlin: Springer Berlin Heidelberg, 2007:121-150.
  • 8MOREIRA M R C, ALMEIDA A A C D, SOUSA D P D, et al. Anxi- olytic-like effects and mechanism of (-)-myrtenol: A monoterpene alco- hol[J]. Neurosel Lett, 2014, 579(13): 119-124.
  • 9IL'INA I V, VOLCHO K P, MIKHALCHENKO O S, et al. Reactions of verbenol epoxide with aromatic aldehydes containing hydroxy or methoxy groups in the presence of montmorillonite clay[Jl. Helv Chim Aeta, 2011,94(3): 502-513.
  • 10YOUSEFZADEH N. Quantitative and qualitative study of bioactive compounds of essential oils of the medicinal plant Artemisia sieberi grown in lorestan (iran) by use of GC-MS technique [J]. Org Chem Curr Res, 2012, 1(4): 15-21.

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部