期刊文献+

基于多元线性回归的线性系统状态空间辨识算法 被引量:4

A state_space identification algorithm for linear systems based on multivariate linear regression
下载PDF
导出
摘要 提出了一种新的多变量线性系统状态空间辨识算法.该算法采用多元线性回归,而不是传统算法中的子空间投影.首先通过多元线性回归获得系统的预估器马尔可夫参数,然后基于一个关键等式获得系统的预估器可观性矩阵与状态序列的乘积矩阵,接着通过奇异值分解得到状态序列,最终再次运用多元线性回归求得系统状态空间模型的各个矩阵.由于本文的算法是预估器式的,因此适用于开环和闭环辨识.基于AIC准则,设计了算法的阶次选择策略,通过仿真例子,验证了该算法的有效性. This paper gives a novel MIMO statespace identification algorithm for linear systems. Incontrast to traditional algorithms, it is based on multivariate linear regression rather than subspace projection. First, the Markov parameters of the predictor are estimated using multivariate linear regression, then the product of the extended observability matrix and the state sequence is estimated using akey equation, and the state sequence is estimated using singular value decomposition. Finally, the estimates of A, B, C, K matrices are computed again by multivariate regression. Since our algorithm is inpredictor form, it is suitable for both openloop and closedloop cases. The order selection strategies ofthe algorithm are based on the AIC criterion. Numerical experiments show the accuracy of our algorithm.
作者 程轶平
出处 《北京交通大学学报》 CAS CSCD 北大核心 2014年第2期13-17,共5页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家自然科学基金资助项目(61050001)
关键词 系统辨识 多元线性回归 状态空间方法 子空间辨识 system identification multivariate linear regression state-space methods subspace identi-fication
  • 相关文献

参考文献11

  • 1Katayama T.Subspace methods for system identification [M].New York:Springer,2005.
  • 2Overschee P V,Moor B D.Subspace identification for lin-ear systems[M].Norwell,Massachusetts.Kluwer,1996.
  • 3Verhaegen M,Verduh V.Filtering and system identifica-tion:A least squares approach[M].Cambridge,UK:Cambridge University Press,2007.
  • 4Jansson M.A new subspace identification method for open and closed loop data [C]//Prague:16th IFAC World Congress,2005:83-88.
  • 5Chiuso A.Role of vector autoregressive modeling in predic-tor-based subspace identification [J].Automatica,2007,43(6):1034-1048.
  • 6Bauer D.Asymptotic properties of subspace estimators[J].Automatic,a,2005,41(3):359-376.
  • 7Bauer D.Order estimation for subspace methods[J].Auto-matica,2001,37(10):1561-1573.
  • 8杨春 欧进萍.子空间系统辨识方法的系统阶数估计.振动与冲击,2009,28(11):13-16.
  • 9Waele S,Broersen P M T.Order selection for vector au-toregressive models[J].IEEE Transactions on Signal Pro-cessing,2003,51(2):427-433.
  • 10Mantalos P.Vector autoregressive order selection and forecasting via the modified divergence information crite-rion [J].International Journal of Computational Eco-nomics and Econometrics,2010,1(3/4):254-277.

共引文献2

同被引文献34

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部