期刊文献+

基于状态压缩的最长公共上升子序列快速算法 被引量:2

A Longest Common Increasing Subsequence Algorithm Based on State Compression
下载PDF
导出
摘要 探讨了最长公共上升子序列(LCIS)问题,在前人算法的基础上提出一种高效求解LCIS的动态规划算法。对于LCIS问题,分别使用最长公共子序列(LCS)和最长上升子序列(LIS)相结合的算法、动态规划算法、经过状态压缩的改进动态规划算法进行设计,并对后两种算法进行了实现。设计的状态压缩的动态规划算法,实现了LCIS的快速求解。通过分析这三种算法的时间和空间复杂度,最终提出了时间复杂度为O(mn)、空间复杂度为O(m)或O(n)的基于状态压缩的快速LCIS算法。 Discussed the problem of a Longest Common Increasing Subsequence ( LCIS) ,put forword a fast dynamic algorithm for LCIS. For the LCIS problem,used respectively the algorithm of a Longest Common Subsequence ( LCS) combined a Longest Increasing Subse-quence (LIS) algorithm,dynamic programming algorithm,improved dynamic programming algorithm through state to design,and per-formed the second and the third algorithm. The designed state compressed dynamic programming algorithm realized a fast solution for LCIS. According to analyze the time and space complexity of the three algorithms,presented a fast algorithm for delivering a longest com-mon increasing subsequence in O( mn) time and O( m) or O( n) space finally.
作者 郭冬梅
出处 《计算机技术与发展》 2014年第5期40-43,共4页 Computer Technology and Development
基金 安徽省高等学校省级优秀青年人才基金项目(2011SQRL040) 安徽理工大学青年教师科学研究基金(2012QNY31)
关键词 最长公共上升子序列 最长公共子序列 最长上升子序列 动态规划 状态压缩 LCIS LCS LIS dynamic programming state compression
  • 相关文献

参考文献12

二级参考文献65

  • 1林贤明,李堂秋,陈毅东.句子相似度的动态规划求解及改进[J].计算机工程与应用,2004,40(35):64-65. 被引量:6
  • 2史彦军,滕弘飞,金博.抄袭论文识别研究与进展[J].大连理工大学学报,2005,45(1):50-57. 被引量:36
  • 3金博,史彦军,滕弘飞.基于篇章结构相似度的复制检测算法[J].大连理工大学学报,2007,47(1):125-130. 被引量:28
  • 4STANLEY R P. Increasing and decreasing subsequences of permutations and their variants [ C ]//Proc of International Congress of Mathematicians. 2005.
  • 5FIRRO G, MANSOUR T. Longest alternating subsequences in pattern-restricted permutations[ J]. Electronic Journal of Combinatotics, 2007,14(1) :1-17.
  • 6COOPER R. Dynamic programming: an overview [ EB/OL ]. ( 2001 - 02-14). http ://econ. bu. edu/facuhy/cooper/ dynprog/ introlect. pdf.
  • 7ALSUWAIYEL M H. Algorithms design techniques and analysis [ M ]. Beijing:Publishing House of Electronics Industry, 2003.
  • 8Wagner R A. The String-to-String Correction Problem[J]. Journal of the ACM, 1974, 21(1): 168-173.
  • 9Hunt J W. A Faster Algorithm for Computing Longest Common Subsequences[J]. Communications of the ACM, 1977, 20(5): 350- 353.
  • 10Hwang F K. An Almost-linear Time and Linear Space Algorithm for the Longest Common Subsequence Problem[J]. Information Processing Letters, 2005, 94(3): 131-135.

共引文献67

同被引文献2

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部