期刊文献+

时标上带p-Laplacian算子的二阶微分方程三点边值问题正解的存在性

EXISTENCE OF POSITIVE SOLUTIONS FOR p -LAPLACIAN DYNAMIC EQUATIONS WITH DERIVATIVE ON TIME SCALES
下载PDF
导出
摘要 利用 Leggett -Williams 不动点定理,给出时标上一类带 p -Laplacian 算子的二阶微分方程三点边值问题至少三个正解存在的充分条件。 We present sufficient conditons for existence of at least three positive solutions to a type of second-order three -point boundary value problems with p -Laplacian operators on time scales by using the fixed -point theorem due to Leggett -Williams.
出处 《山东师范大学学报(自然科学版)》 CAS 2014年第1期11-13,19,共4页 Journal of Shandong Normal University(Natural Science)
基金 山东省自然科学基金资助项目(ZR2013AM005).
关键词 正解 时标 边值问题 不动点定理 positive solution time scales dynamic equation fixed point theorem
  • 相关文献

参考文献6

  • 1He Z M. Double positive solutions of three - point boundary value problems for p - Laplacian dynamic equations on time scales [ J ]. J Comput Appl Math ,2005,182:304 - 315.
  • 2张炳根.测度链上微分方程的进展[J].中国海洋大学学报(自然科学版),2004,34(5):907-912. 被引量:32
  • 3Sun H R,Li W T. Multiple positive solutions for p-7 Laplacian m- point boundary value problems on time scales[ J]. Appl Math Comput,2006, 182:478 -491.
  • 4Sun Shurong, Zhang Meng, Han Zhenlai, et al. Existence of positive solutions for SturmLiouville - like boundary value problem with p - Laplacian on time scales [ J ]. J ApplMath Comput,2011,37 ( 1 - 2) :443 - 458.
  • 5潘元元,韩振来.时标上二阶中立型时滞动力方程的振动性[J].济南大学学报(自然科学版),2012,26(2):191-194. 被引量:5
  • 6Fan Jinjun, Li Liqing. Existence of positive solutions for P - Laplacian dynamic equations with derivative on time scales [ J ]. Journal of Applied Mathematics,Volume 2013 (2013), Article ID 736583,7 pages http://dx, doi. org./10. 1155/2013/736583.

二级参考文献38

  • 1Hilger S.Analysis on measure chains_a unified approach to continuous and discrete calculus [J].Results Math,1990,18:18-56.
  • 2Kaymakcalan B,Lakshmikantham V,Sivasundaram S.Dynamic Systems on Measure Chains [M].Boston:Kluwer Academic Publishers,1996.
  • 3Martin Bohner,Allan Peterson.Dynamic Equations on Time Scales,An Introduction with Applications [M].Boston:Birkhauser,2001.
  • 4Agarwal R P,Bohner M,O'Regan D,et al.Dynamic equations on time scales:a survey [J].J Comput Appl Math,2002,141 (1-2):1-26.
  • 5Bohner M,Guseinov G,Peterson A.Introduction to the Time Scales Calculus,Advances in Dynamic Equations on Time Scales,1-15 [M].Boston M A:Birkhanser,2003.
  • 6Agarwal R P,Bohner M.Basic calculus on time scales and some of its applications [J].Results Math,1999,35:3-22.
  • 7Kaymakalan B,Lawrence B A.Coupled solutions and monotone iterative techniques for some nonlinear initial value problems on time scales.Nonlinear Analysis [J].Real World Appl,2003,2:245-259.
  • 8Zhang B G,Zhu shanliang.Oscillation of second order nonlinear delay dynamic equations on time scales [J].Compnters Math.Applic.to a appear.
  • 9Erbe L,Hilger S.Sturmian theory on measure chains [J].Differential Equations Dynam.Systems,1993,1:223-246.
  • 10Erbe L H,Peterson A.Green functions and comparison theorems for differential equations on measure chains [J].Dynamics Contin Discrete Impuls Systems,1999,6:121-137.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部