期刊文献+

平均相对运动方程及其在卫星编队构型维持中的应用

Averaged Relative Motion Equation and Applications to Satellite Formation Configuration Maintenance
下载PDF
导出
摘要 针对近地轨道卫星相对运动过程中的周期变化特性,利用轨道周期平均方法给出了平均相对运动方程,并在此基础上设计了两种编队构型维持策略.首先,推导出以轨道根数差分表示的平均相对运动方程,该方程能有效消除相对运动的周期性变化.其次,针对大气阻力摄动和J2项摄动,利用轨道平均根数的线性化递推公式,给出了平均相对运动轨迹的预报方程,通过事先预报编队飞行的平均轨迹,为编队构型设计和保持控制提供参考依据.最后通过数学仿真对两种编队构型维持策略进行了验证. The averaged relative motion equation of elliptic orbit satellite formation is presented based on the averaged analysis method during an orbit period, and two different formation configuration maintaining methods are proposed. The orbit elements difference is used to derive the averaged relative motion equation, and the proposed model can effectively eliminate the periodic movement. Based on the linear recursive equation of mean orbit elements difference, the forecast equation of averaged relative motion is obtained via considering the orbital perturbation. The forecast model can provide valuable information for configuration design and configuration maintaining. Simulation results verify the effectiveness of the proposed formation configuration maintaining methods.
作者 车汝才
出处 《空间控制技术与应用》 2014年第2期8-13,共6页 Aerospace Control and Application
基金 国家重点基础研究发展计划(973)资助项目(2013CB733100)
关键词 卫星 平均相对运动 编队飞行 构型维持 satellite averaged relative motion formation flying configuration maintaining
  • 相关文献

参考文献11

  • 1AMICO S D, ARDAENS J S. Spaceborne autonomous formation-flying experiment on the PRISMA mission [ J ]. Journal of Guidance, Control and Dynamics, 2012, 35 ( 3 ) : 834-850.
  • 2COLHESSY W H, WILTSHIRE R S. Terminal guidance system for satellite rendezvous [ J]. Journal for Aero- space Sciences, 1960, 27(9): 653-658.
  • 3TSCHAUNER J F A, HEMPEL P R. Rendezvous zu einemin elliptischer bahn umlaufenden ziel [ J]. Astro- nautica Acta, 1965, 11(2): 104-109.
  • 4INALHAN G, TILLERSON M, HOW J P. Relative dy- namics and control of spacecraft formations in eccentric orbits [ J]. Journal of Guidance, Control and Dynam- ics, 2002, 25 ( 1 ) : 48-59.
  • 5KATSUHIKO Y, MASAYA K. New state transition ma- trix for formation flying in J2-perturbed elliptic orbits [ J ]. Journal of Guidance, Control and Dynamics, 2012, 35(2): 536-547.
  • 6MAI B, AKIRA I. Graphical generation of periodic or- bits of Tschauner-Hempel equation [ J ]. Journal of Guidance, Control and Dynamics, 2012, 35(3) : 1002- 1007.
  • 7SCHAUB H. Analytical mechanics of space systems [ M]. Virginia: AIAA Education Series, 2003.
  • 8VADALI S R, VADDI S S, ALFRIEND K T. An intel- ligent control concept for formation flying satellite [ J]. International Journal of Robust and Nonlinear Control, 2002, 12(2/3) : 97-115.
  • 9BALAJI S K, ALFRED N. A bang-bang control ap- proach to maneuver spacecraft in a formation with differ- ential drag [ R]. AIAA 2008-6469,2008.
  • 10SCHAUB H. Analytical mechanics of space systems [M]. Virginia: AIAA Education Series, 2003.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部