期刊文献+

直升机复合材料桨叶固化过程的多物理场有限元模拟 被引量:2

Multi-Physics Finite Element Simulation of Curing Process for Helicopter Composite Blade
下载PDF
导出
摘要 根据热传导、复合材料力学和固化动力学理论,采用基于偏微分方程的强耦合多物理场有限元方法,计算在F650双马来酰亚胺树脂建议温度周期下直升机复合材料桨叶固化过程中温度、固化度、固化度反应速率和内应力变化历程。通过仿真结果对温度周期进行优化调整,改善工艺过程。计算结果表明:桨叶中树脂固化反应同步度高,交联反应产热量少;调整后的加热周期与建议加热周期相比,最高加热温度由460 K降低为393 K,但固化度由0.1增加到1的反应时间只由25 min增加为30 min,固化反应速率峰值从1.35×10-3/s降低为1.15×10-3/s,PMI(聚甲基丙烯酰亚胺,Polymethacrylimide)泡沫的Von Mises热应力最大值从0.82MPa降低为0.482 MPa。 Based on heat transfer theory, mechanics of composite materials and cure kinetics, the temperature, degree, reaction rate of cure and thermal stress in the composite helicopter blade' s curing process under the recom- mended temperature cycle of F650 bismaleimide resin are calculated. The strong coupling multi-physics finite element method for solving partial differential equation is applied in this paper. The result shows that during the curing process, the curing reaction of resin is highly synchronized, and the exothermic erosslinking reaction is faint; com- pared with the recommended heating cycle, the highest heating temperature lowers from 460 K to 393 K in the adjus- ted heating cycle, but the reaction time of the curing degree from O. 1 to 1 only increases from 25 to 30 min, the peak value of the curing reaction rate decreases from 1.35 ×10-3/s to 1. 15 ×10-3/s,and the maximal thermal stress in the PMI foam drops from 0.82 MPa to 0. 482 MPa.
出处 《宇航材料工艺》 CAS CSCD 北大核心 2014年第2期19-23,共5页 Aerospace Materials & Technology
关键词 复合材料 固化 有限元分析 桨叶 双马来酰亚胺树脂 多物理场耦合 Composite, Cure, Finite element analysis, Blade, Bismaleimide, Multi-physics coupling
  • 相关文献

参考文献7

二级参考文献41

共引文献104

同被引文献24

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部