期刊文献+

空间旋转对称场可视分析

Visual Analysis of 3D Rotational Symmetry Fields
下载PDF
导出
摘要 构建旋转对称场是生成多面体网格的一个关键步骤,而空间旋转对称场的模式复杂,缺乏有效的可视化与特征分析手段.为此,提出一套基于参数化的空间旋转对称场表达、可视化与分析方法.首先对对称场进行规则化采样,再对规则化的对称场进行局部区域形状重建,以获取局部区域的近似标量场表达;进而使用Zernike描述算子将该局部标量场分解为一系列旋转无关的特征参数,逐区域地处理整个对称场,将之转化为多变量标量数据;最后采用多变量可视化方法进行可视分析和特征抽取.计算实例的应用结果表明,该方法能有效地对空间旋转对称场进行可视分析,抽取出用户感兴趣的特征. Creating rotational symmetry field plays a key role for generating the auxiliary mesh structures. However, analyzing and visualizing 3D rotational symmetry fields is challenging due to its complex patterns and the lack of efficient visualization methods. This paper proposes a feature description and visual analysis approach that consists of three stages. First, a regularization sampling is performed. The shape of every local area in symmetrical field is reconstructed to obtain the approximate scalar field of the area. Then, a set of Zernike descriptors are computed at each local sampling point, yielding a series of rotating independent parameters. A multi-variable field is generated after the traversal process for all the local areas. Finally, an iterative visual analysis process is interactively carried out to detect interested features in the field. The results on datasets verify that the proposed method can effectively support the visual analysis of 3D rotational symmetric fields.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第5期717-724,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"八六三"高技术研究发展计划(2012AA12090) 国家自然科学基金重点项目(61232012) 国家自然科学基金(81172124) 教育部博士点基金(20120101110134) 浙江省自然科学基金杰出青年基金(LR13F020001)
关键词 多变量 空间旋转对称场 可视分析 特征抽取 multi-variable 3D rotational symmetry fields visual analysis feature extraction
  • 相关文献

参考文献23

  • 1HuangJ, Tong Y Y, Wei H smooth 3D cross-frame field g[J] et al. Boundary aligned ACM Transactions on Graphics, 2011, 30(6) : Article No. 143.
  • 2Palacios J, Zhang E. Rotational symmetry field design on surfaces [J]. ACM Transactions on Graphics, 2007, 26 (3).
  • 3Article No. 55 Cabral B, Leedom L C. Imaging vector fields using line integral convolution [C] //Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. New York: ACM Press, 1993:263-270.
  • 4Palacios J, Zhang E. Interactive visualization of rotational symmetry fields on surfaces[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(7)- 947-955.
  • 5Johnson C, Hansen C. The visualization handbook[M] Orlando: Academic Press, 2004.
  • 6Hertzmann A, Zorin D. Illustrating smooth surfaces [CJ // Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. New York: ACM Press, 2000:517-526.
  • 7Ray N, Li W C, Lfvy B, et al. Periodic global parameterization [J]. ACM Transactions on Graphics, 2006, 25(4) : 1460-1485.
  • 8Ray N, Vallet B, Li W C, etal. N symmetry direction field design [J]. ACM Transactions on Graphics, 2008, 27 (2): Article No. 10.
  • 9Delmarcelle T, Hesselink L. The topology of symmetric, second-order tensor fields [C]//Proceedings of the Conference on Visualization. Los Alamitos: IEEE Computer Society Press, 1994- 140-147.
  • 10Gresh D L, Rogowitz B E, Winslow R L, etal. WEAVE: a system for visually linking 3D and statistical visualizations applied to cardiac simulation and measurement data [C]// Proceedings of IEEE Visualization. Los Alamitos, IEEE Computer Society Press, 2000:489-492.

二级参考文献33

  • 1Basser P J, Pajevic S, Pierpaoli C, et al. In vivo fiber tractography using DT-MRI data [J]. Magnetic Resonance in Medicine, 2000, 44(4):625-632.
  • 2Xue R, van Zijl P C M, Crain B J, et al. In vivo three- dimensional reeonstruetion of rat brain axonal projections by diffusion tensor imaging [J]. Magnetic Resonance in Medicine, 1999, 42(6): 1123-1127.
  • 3Kindlmann G. Superquadric tensor glyphs [C] //Proceedings of IEEE TCVG Symposium on Visualization. Aire-la-Ville: Eurographics Association Press, 2004 : 147-154.
  • 4Kindlmann G, Westin C F. Diffusion tensor visualization with glyph packing [J]. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(5) : 1329-1336.
  • 5Laidlaw D H, Ahrens E T, Kremers D, et al. Visualizing diffusion tensor images of the mouse spinal cord [C] // Proceedings of the Conference on Visualization. Los Alamitos: IEEE Computer Society Press, 1998:127-134.
  • 6Pierpaoli C, Basser P J. Toward a quantitative assessment of diffusion anisotropy[J].Magnetic Resonance in Medicine, 1996, 36(6): 893-906.
  • 7Chen W, Zhang S, Correia S, et al. Visualizing diffusion tensor imaging data with merging ellipsoids [C] //Proceedings of the IEEE Pacific Visualization Symposium. Piscataway: IEEE Computer Society Press, 2009:145-151.
  • 8Lefebvre S, Hoppe H. Perfect spatial hashing [J]. ACM Transactions on Graphic, 2006, 25(3): 579-588.
  • 9Mori S, van Zijl P C M. Fiber tracking: principles and strategies-a technical review [J].NMR in Biomedicine, 2002, 15(7/8) : 468-480.
  • 10Brill M, Djatschin W, Hagen H, etal. Streamball techniques for flow visualization [C] //Proceedings of the Conference on Visualization. Los Alamitos: IEEE Computer Soeiety Press, 1994:225-231.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部