期刊文献+

基于决策树方法的遥感影像分类 被引量:5

The Classification of Remote Sensing Image Based on Decision Tree
下载PDF
导出
摘要 以齐齐哈尔市辖区为研究区域,利用分类回归树(Classification and Regression Tree,CART)算法从训练样本数据集中挖掘分类规则,集成遥感影像的光谱特征、纹理特征和地学辅助数据建立研究区的决策树模型.用实测的GPS样本点对分类结果进行精度验证,并与最大似然监督分类方法(Maximum Likelihood Classification,MLC)进行对比.结果表明,基于CART的决策树分类结果的总精度和Kappa系数分别为82.24%和0.77,分类精度较MLC监督分类方法有明显提高,有较好的分类效果. In this paper, Landsat TM images of Qiqihar city in Heilongjiang were classified with a decision tree, which was established based on the analysis of the spectrum features, and other auxiliary information, such as NDVI and topography characteristics. Classification and Regression Trees (CART) algorithm was used for mining classification rules from the training sample data sets. Then decision tree classification with maximum likelihood classification was compared. The result indicated that the accuracy of decision tree classification was better than that of the maximum likelihood classification.
出处 《哈尔滨师范大学自然科学学报》 CAS 2014年第2期61-64,共4页 Natural Science Journal of Harbin Normal University
关键词 遥感影像 决策树分类 信息提取 CART算法 Remote sensing Decision tree classification Information extraction CART algorithm
  • 相关文献

参考文献12

二级参考文献164

共引文献629

同被引文献56

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部