期刊文献+

Fusion of visible and thermal images for facial expression recognition 被引量:2

Fusion of visible and thermal images for facial expression recognition
原文传递
导出
摘要 Most present research into facial expression recognition focuses on the visible spectrum, which is sen- sitive to illumination change. In this paper, we focus on in- tegrating thermal infrared data with visible spectrum images for spontaneous facial expression recognition. First, the ac- tive appearance model AAM parameters and three defined head motion features are extracted from visible spectrum im- ages, and several thermal statistical features are extracted from infrared (IR) images. Second, feature selection is per- formed using the F-test statistic. Third, Bayesian networks BNs and support vector machines SVMs are proposed for both decision-level and feature-level fusion. Experiments on the natural visible and infrared facial expression (NVIE) spontaneous database show the effectiveness of the proposed methods, and demonstrate thermal 1R images' supplementary role for visible facial expression recognition. Most present research into facial expression recognition focuses on the visible spectrum, which is sen- sitive to illumination change. In this paper, we focus on in- tegrating thermal infrared data with visible spectrum images for spontaneous facial expression recognition. First, the ac- tive appearance model AAM parameters and three defined head motion features are extracted from visible spectrum im- ages, and several thermal statistical features are extracted from infrared (IR) images. Second, feature selection is per- formed using the F-test statistic. Third, Bayesian networks BNs and support vector machines SVMs are proposed for both decision-level and feature-level fusion. Experiments on the natural visible and infrared facial expression (NVIE) spontaneous database show the effectiveness of the proposed methods, and demonstrate thermal 1R images' supplementary role for visible facial expression recognition.
出处 《Frontiers of Computer Science》 SCIE EI CSCD 2014年第2期232-242,共11页 中国计算机科学前沿(英文版)
关键词 facial expression recognition feature-level fu-sion decision-level fusion support vector machine Bayesiannetwork thermal infrared images visible spectrum images facial expression recognition, feature-level fu-sion, decision-level fusion, support vector machine, Bayesiannetwork, thermal infrared images, visible spectrum images
  • 相关文献

参考文献3

二级参考文献132

  • 1左坤隆,刘文耀.基于活动外观模型的人脸表情分析与识别[J].光电子.激光,2004,15(7):853-857. 被引量:19
  • 2薛雨丽,毛峡,张帆.BHU人脸表情数据库的设计与实现[J].北京航空航天大学学报,2007,33(2):224-228. 被引量:20
  • 3Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces: vs. fisherfaces: recognition using class specific linear projection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711-720.
  • 4Sire T, Baker S, Bsat M. The CMU pose, illumination, and expression (PIE) database [ A ] . In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition [C] , Washington, DC, USA, 2002: 46-51.
  • 5Martinez A M, Benavente R. The AIR face database [ R]. Technical Report 24, The Computer Vision Center (CVC), Barcelona, Spain, 1998.
  • 6Hwang B W, Rob M C, Lee S W. Performance evaluation of face recognition algorithms on Asian face database [ A ]. In: Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition [ C ], Seoul, South Korea, 2004 : 278-283.
  • 7Gau W, Cao B, Sban S, et al. The CAS-PEAL large-scale chinese face database and baseline evaluations [ J ]. IEEE Transactions on Systems, Man and Cybernetics, Part A, 2008, 38( 1 ) : 149-161.
  • 8Pantic M, Rothkrantz L J M. Automatic analysis of facial expressions: the state of the art [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 ( 12 ) : 1424-1446.
  • 9Fasel B, Luettin J. Automatic facial expression analysis: a survey [ J]. Pattern Recognition, 2003, 36 ( 1 ) : 259-275.
  • 10Essa I, Pentland A. Coding, analysis, interpretation, and recognition of facial expressions [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 757-763.

共引文献115

同被引文献5

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部