期刊文献+

锅炉对流受热面灰污监测研究 被引量:1

On the Monitoring of Ash Fouling on the Convection Heating Surface of Boiler
下载PDF
导出
摘要 为了提高电站锅炉对流受热面灰污监测的准确性,更好地进行吹灰优化,提出了基于最小二乘支持向量机的锅炉对流受热面灰污监测方法。以天津北疆电厂1 000 MW机组锅炉为例,建立监测模型,分析了模型建立过程中输入参数的选择、数据的采集与筛选、数据的预处理、核函数的选择等。结果表明:此模型监测结果与电厂的实际吹灰操作一致,能够较准确地实现电站锅炉受热面的灰污监测,为电厂进一步地吹灰优化打下了良好的基础。 In order to improve the accuracy of the monitoring of ash fouling on the convection heating surface of the boiler in power station and optimizes soot blow!ng better, proposes monitoring method for ash fouling on the convection heating surface of boiler based on least squares support vector machine. With the boiler of 1 000 MW unite in Tianjin Beijiang Power Plant as an example, establishes a monitoring model, analyze the selection of input parameters, the collection and filtering of the data, preprocessing of the data, and selection of kernel function in modeling process. The results shows that: the monitoring results of the model is consistent with the actual soot blowing operation of the power plant, which can accurately achieve the monitoring of ash fouling on the heating surface of the boiler to lay a good foundation for further optimizing the soot blowing of power plant.
出处 《能源与节能》 2014年第4期156-159,共4页 Energy and Energy Conservation
关键词 最小二乘支持向量机 锅炉 对流受热面 灰污监测 least squares support vector machine boiler convection heating surface monitoring of ash fouling
  • 相关文献

参考文献8

  • 1B.Pe·a,E.Teruel,L.I.Díez. Soft-computing models for sootblowing optimization in coal-fired utility boilers[J].Applied Soft Computing,2011,(02):1657-1668.
  • 2陆红波,吉云,谷薇,黄孝彬,苏杰.燃煤电站锅炉对流受热面灰污监测的研究[J].电力科学与工程,2010,26(2):60-63. 被引量:5
  • 3吴观辉,向文国.基于神经网络的锅炉对流受热面灰污监测研究[J].锅炉技术,2005,36(2):18-21. 被引量:10
  • 4Enrique Teruel,Cristobal Cortes,Luis Ignacio Diez. Monitoring and prediction of fouling in coal-fired utility boilers using neural networks[J].Chemical engineering science,2005,(18):5035-5048.
  • 5Luis M.Romeo,Raquel Gareta. Neural network for evaluating boiler behaviour[J].Applied Thermal Engineering,2006,(14):1530-1536.
  • 6王定成.支持向量机建模预测与控制[M]北京:气象出版社,2009.
  • 7樊泉桂.锅炉原理[M]北京:中国电力出版社,2008.
  • 8邓乃扬;田英杰.数据挖掘的新方法:支持向量机[M]北京:科学出版社,2004.

二级参考文献14

  • 1王全钢,朱予东,阎维平.600MW燃煤锅炉受热面变蒸汽压力吹灰的试验研究[J].电力科学与工程,2006,22(4):9-11. 被引量:4
  • 2Pedro Manuel Vasquez-Urbano. Optimal scheduling of sootblowers in power plant power [D]. A dissertation for Doctor of Seience. The George Washington University. 1998.
  • 3Thomas C Elliott. Monitoring power plant performance [J]. Power, 1991, (9): 11-20.
  • 4Funihashi, K. On the approximate realization of continuous mappings by neural networks[J]. Neural Networks, 1989, (2):183-192.
  • 5Wasserman, P. D. Neural computing-theory and practice[M]. Van Nostrand Reinhold, New York,1989.
  • 6Mckeown, J. J,Meegan. D, et al. An introduction to unsustained optimization[M]. Adam Hilger, 1990.
  • 7A. Valero, C. Cortrs. Ash fouling in coal- fired utility boilers monitoring and optimization of on- load eleaning[J]. Progress in Energy and Combust Science, 1996,22:189-200.
  • 8Thompson S, Li N. Boiler sootblowing optimpzation for power generation plant [J]. IEE Conf Control 91, Edinburgh, UK,1991: 1277- 1282.
  • 9Irwin, G. W, Warwick K, et al. Neural network applica tions in control and systems[A], lEE Control Engineering Series[C]. 1995.
  • 10朱予东,张婷,李太兴,吴彦坤.基于传热熵产的吹灰优化模式的改进[J].电力科学与工程,2008,24(3):41-43. 被引量:4

共引文献13

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部