期刊文献+

红利支付情形下最优投资组合模型研究

Optimal portfolio strategy model with dividend-paying state
下载PDF
导出
摘要 提出了投资者如何使得终端财富期望效用最大化问题。证券价格的随机微分方程中出现的漂移过程以及布朗运动被假设为投资者在市场中观测不到的,投资者只关注证券价格和利息率,在此模型框架背景下讨论红利支付状态的最优投资组合策略,进一步对前人研究的相关模型进行了推广。 The optimization problem of maximizing investors' expected utility fi'om terminal is addressed. It was assumed that the drift process and the driving Brown/notion appearing in the stochastic differential equation for the security prices were unobserv- able for investors in the market, and that investors only observed security prices and interest rates. Under the assumption, the optimal portfolio strategy of dividend payments was discussed and the related models were promoted.
出处 《阜阳师范学院学报(自然科学版)》 2014年第1期8-10,15,共4页 Journal of Fuyang Normal University(Natural Science)
基金 国家自然科学基金项目(71210107026)资助
关键词 梯度算子 Clark公式 红利 投资策略 gradient operator Clark' s formula dividend investment strategy
  • 相关文献

参考文献8

  • 1Karatzas I, Shrecve S E. Methods of Mathematical Fi- nance[M]. New York: Springer, 1998.
  • 2Karatzas I, Shrecve S E. Brownian Motion and Stochas- tic Calculus [ M ]. New York : Springer, 1991.
  • 3Fei W Y. Optimal consumption and portfolio choice with ambiguity and anticipation [ J ]. Information Sciences, 2006, 177(23) : 5178-5190.
  • 4Malliavin P, Thalmaier A. Stochastic Calculus of Varia- tions in Mathematical Finance[ M]. New York : Spring- er, 2000.
  • 5Lakner P. Utility maximization with partial information [J ]. Stochastic Processes and their Applications, 1995, 56(2): 247-273.
  • 6Lakner P. Optimal trading strategy for an investor: the case of partial, information[ J]. Stochastic Processes and their Applications, 1998, 76( 1 ) : 77-97.
  • 7Lakner P, Nygren L M. Portfolio optimization with downside constraints [ J ]. Mathematical Finance, 2006, 16(2): 283-299.
  • 8Ocone D L, Karatzas I. A generalized Clark representa- tion formula with application to optimal portfolios [ J ]. Stochastic and Stochastic Reports, 1991, 34: 187-220.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部