摘要
利用共轭对偶化方法,首先将n维欧氏空间线性等距算子特征根的相关结果推广到E(n)型Banach空间,然后获得了EA(n)型Banach空间等距线性算子的表现定理,利用表现定理得到了EA(n)空间中Tingley问题成立的充要条件.
In the paper, by the use of dual methods of conjugate, we promote this conclusion on the eigenvalues of linear isometry in Hilbert space to E_(n) Type Banach Spaces firstly, with this result, and then we got the representation theorem of isometric linear operators in E-A_(n) Type Banach spaces, this result is new. Finally, we also used the representation theorem to obtain a necessary and sufficient condition of Tingley issues in E_(n) the space.
出处
《纯粹数学与应用数学》
CSCD
2014年第2期143-148,共6页
Pure and Applied Mathematics
基金
江西省自然科学基金(2010GZC0186)