期刊文献+

带无穷时滞两种群Lotka-Volterra离散模型的持久性 被引量:1

Permanence of two species Lotka-Volterra discrete system with infinite delay
下载PDF
导出
摘要 研究了一类无穷时滞两种群竞争Lotka-Volterra离散模型.通过构造李雅普诺夫函数,利用不等式的放缩技巧,给出了系统持久的充分条件.从而可知无穷时滞对种群的持久性没有影响. In this paper, a Lotka-volterra competitive discrete system with infinity delay is investigated. By constructing Lypunov functions, an sufficient conditions for the permanence of the system has been established. From the result, we find that the infinity delay does not effect the permanence of the system.
出处 《纯粹数学与应用数学》 CSCD 2014年第2期166-172,共7页 Pure and Applied Mathematics
基金 国家自然科学基金(11301451) 新疆自治区高校科研计划(XJUEDU2013S44)
关键词 持久性 种群离散模型 LOTKA-VOLTERRA系统 无穷时滞 permanence species discrete system Lotka-Volterra system infinite delay
  • 相关文献

参考文献10

  • 1Teng Zhidong. Uniform persistence of the periodic predator-prey Lotka-Volterra systems [J]. Appl.Anal.,1999,72:339-352.
  • 2Cui Jingan, Sun Yonghong. Permanence of predator-prey system with infinite delay [J]. Electronic Journalof Differential Equations, 2004,81:1-12.
  • 3Lu Zhengyi, Wang Wendi. Permanence and global attractivity for Lotka-Volterra difference systems [J]. J.Math. Biol., 1999,39(3):269-282.
  • 4樊小琳,秦丽华,刘艳.捕食者非密度制约的捕食食饵模型的持久性[J].纯粹数学与应用数学,2011,27(4):459-471. 被引量:1
  • 5王晖.一类基于比率的且具有收获率和时滞的捕食系统的周期解[J].纯粹数学与应用数学,2013,29(5):520-528. 被引量:4
  • 6田德生.三阶常系数拟线性泛函微分方程的周期解[J].纯粹数学与应用数学,2013,29(3):233-240. 被引量:3
  • 7Li Yongkun, Zhu Lifei. Existence of positive periodic solutions for difference equations with feedback control[J]. Applied Mathematics Letters, 2005,18:61-67.
  • 8Chen Fengde. Permanence of a single species discrete model with feedback control and delay [J]. AppliedMathematics Letters, 2007,20:729-733.
  • 9Saito Y, Ma Wanbiao, Hara T. A necessary and sufficient condition for permanence of a Lotka-Volterradiscrete system with delays [J]. J. Math. Anal. Appl., 2001,256(1):162-174.
  • 10Saito Y, Hara T, Ma Wanbiao. Harmless delays for permanence and impersistence of a Lotka-Volterradiscrete predator-prey system [J]. Nonlinear Anal., 2002,50:703-715.

二级参考文献32

  • 1Kuang Y. Delay Differential Equation with Applications in Population Dynamics[M]. New York: Academic Press, 1993.
  • 2Zhao X Q. Dynamical Systems in Population Biology[M]. New York: Springer-Verlag, 2003.
  • 3Smith H L. Cooperative system of differential equation with concave nonlinearities[J]. Nonl. anal., 1986,10: 1037-1052.
  • 4Zhao X Q. The qualitative analysis of N-species Lotka-Volterra periodic competition systems[J]. Math. Computer Modeling, 1991,15:3-8.
  • 5Cui J, Chen L, Wang W. The effect of disperal on population growth with stage structure[J]. Comput. Math. Appl., 2000,39:91-102.
  • 6Cui J, Song X. Permanence of predator-prey system with stage structure[J]. Discrete and Continuous Dynamical System-series B., 2004,3(4):547-554.
  • 7Teng Z. Uniform persistence of the periodic predator-prey Lotka-Volterra systems[J]. Appl. Anal., 1999,72:339- 352.
  • 8Cui J, Sun Y. Permanence of predator-prey system with infinite delay[J]. Electronic Journal of Differential Equations., 2004,81:1-12.
  • 9Teng Z, Chen L. Permanence and extinction of predator-prey systems in a patch environment with delay[J]. Nonlinear analysis, 2003,4:335-364.
  • 10Hale J K. Theory of Functional Differential Equations[M]. New York: Springer, Heidelberg, 1977.

共引文献5

同被引文献8

  • 1梁志清.一类基于比例确定的离散Leslie系统正周期解的存在性[J].生物数学学报,2004,19(4):421-427. 被引量:9
  • 2Yang Bo. Pattern formation in a diffusive ratio-dependent Holling-Tanner predator-prey model with Smith Growth [J]. Discrete Dynamics in Nature and Society, 2013, DOI: org/10.1155/2013/454209.
  • 3Chen F D. Permanence for the discrete mutualism model with time delays [J]. Math. Comput. Model., 2008,47(3/4) :431-435.
  • 4Fan M, Wang K. Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey sys- tern [J]. Math. Comput. Modelling, 2002,35(9/10):951-961.
  • 5Huo H F, Li W T. Stable periodic solution of the discrete periodic Leslie-Grower predator-prey model [J]. Math. Comput. Model., 2004,40(3/4):261-269.
  • 6Yang X T, Liu Y Q, Chen J. Uniform persistence for a discrete predator-prey system with delays [J]. Appl. Math. Comput., 2011,218(4):1174-1179.
  • 7Teng Z D, Zhang Y, Cao J. Permanence criteria for general delayed discrete nonautonomous n-species Kolmogorov systems and its applications [J]. Comput. Math. Appl., 2010,59(2):812-828.
  • 8Li Y K, Zhang T W. Permanence and almost periodic sequence solution for a discrete delay logistic equation with feedback control [J]. Nonlinear Anal. RWA., 2011,12(3):1850-1864.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部