期刊文献+

薏仁种类的近红外光谱技术快速鉴别 被引量:13

Rapid Identification of Coix Seed Varieties by Near Infrared Spectroscopy
下载PDF
导出
摘要 薏仁是一种药食两用资源,对其品质快速鉴别的需求也越来越多,近红外光谱技术(near infrared spectroscopy,NIRS)作为一种快速、无损且环保的方法正适合这一需求。以不同产地和品种薏仁的近红外光谱为基础,结合化学计量学方法对薏仁种类进行鉴别。对原光谱用无监督学习算法主成分分析(principal component analysis,PCA)和有监督学习算法学习向量量化(learning vector quantization,LVQ)神经网络、支持向量机(support vector machine,SVM)进行定性判别分析。由于不同地区和不同品种的薏仁营养物质组成复杂且含量相近,所选两类薏仁的特征变量很相似,因而PCA得分图重叠严重,很难区分;而LVQ神经网络和SVM都能得到满意结果,LVQ神经网络的预测正确率为90.91%,SVM在经过惩罚参数和核函数参数优选后,分类准确率能达到100%。结果表明:近红外光谱技术结合化学计量学方法可作为一种快速、无损、可靠的方法用于薏仁种类的鉴别,并为市场规范提供技术参考。 Unsupervised learning algorithm-principal component analysis (PCA) ,and supervised learning algorithm-learning vec-torquantization (LVQ)neuralnetworkandsupportvectormachine (SVM)wereusedtocarryoutqualitativediscriminantanaly-sis of different varieties of coix seed from different regions .Since nutrient compositions of different varieties coix seed samples from different origins were complex and the contents were similar ,characteristic variables of two kinds of coix seed were alike , the scores plot of their principal components seriously overlapped and the categories of coix seed were difficult to distinguish . While satisfactory results were obtained by LVQ neural network and SVM .The accuracy of LVQ neural network prediction is 90.91% ,while the classification accuracy of SVM ,whose penalty parameter and kernel function parameter were optimized ,can be up to 100% .The results show that NIRS combined with chemometrics can be used as a rapid ,nondestructive and reliable method to identify coix seed varieties and provide technical reference for market regulation .
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第5期1259-1263,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(21276154 31171642) 科技部农业科技成果转化资金项目(2011GB2C000008)资助
关键词 薏仁 近红外光谱 支持向量机 学习向量量化神经网络 定性判别 Coix seed Near infrared spectroscopy Support vector machine Learning vector quantization neural network Qualitative discriminant
  • 相关文献

参考文献11

  • 1Hu A J, Zhao S N, I.iang H H, et al. Ultrasonics Sonochemistry, 2007, 14(2): 219.
  • 2Chung C P, Hsia S M, Lee M Y, et al. J. Agric. Food Chem. , 2011, 59 (11): 6025.
  • 3苗明三.薏苡仁多糖对环磷酰胺致免疫抑制小鼠免疫功能的影响[J].中医药学报,2002,30(5):49-50. 被引量:90
  • 4Lin L J, Hsiao E S L, Tseng H S, et al. J. Agric. Food Chem. , 2009, 57(22): 10916.
  • 5LIANG Yi-zeng, XU Qing-song(梁逸曾,许青松).Instrumental Analysis of Complex Systems: White, Gray and Black Analytical Sys-tems and Their Multivariate Methods(复杂体系仪器分析:白、灰、黑分析体系及其多变量解析方法).Beijing:Chemical Industry Press(北京:化学工业出版社),2012.480.
  • 6XIEZhong-hua(谢中华).Statistical Analysis and Application of MATLAB: 40 Cases Analysis(MATLAB统计分析与应用:40个案例分析).Beijing:Bering University of Aeronautics and Astronautics Press(北京:北京航空航天大学出版社),2011.354.
  • 7褚小立,许育鹏,陆婉珍.用于近红外光谱分析的化学计量学方法研究与应用进展[J].分析化学,2008,36(5):702-709. 被引量:124
  • 8SHI Feng, WANG Xiao-chuan, YU Lei, et al(史峰,王小川,郁磊,等).Neural Network of MATLAB: 30 Cases Analysis(MAT-LAB神经网络:30个案例分析).Beijing: Beijing University of Aeronautics and Astronautics Press(北京:北京航空航天大学出版社),2010.112,188.
  • 9Kennard R W, Stone I. A. Technometries, 1969, 11(1): 137.
  • 10张菊华,朱向荣,李高阳,等.分析化学,2010,39(5):748.

二级参考文献49

共引文献213

同被引文献227

引证文献13

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部