摘要
最优潮流问题是一个含有连续变量和离散变量的非凸的、大规模的非线性规划问题,是混合整数非线性规划问题(MINLP)。它属于NP-hard问题,精确求解非常困难。本文对含离散和连续混合决策变量最优潮流问题的求解算法进行了分类和总结。介绍了各种求解技术的原理和具体做法,并从算法的收敛性、准确性、快速性等角度对它们进行了评价,指出了它们各自的优缺点及应用价值。
In general,the optimal power flow problem is a non-convex,large-scale,nonlinear programming problem with both continuous and discrete variables.It is a mixed-integer nonlinear problem in the strict mathematical sense and it belongs to NP-hard problem which is very hard to solve.Solving techniques of the OPF problem are summarized and classified.Their principles and specific practices are introduced.And they are evaluated by the convergence,accuracy,rapidity of the algorithm.Their advantages and disadvantages which determine their applications are pointed out.
出处
《自动化技术与应用》
2014年第4期1-5,28,共6页
Techniques of Automation and Applications
基金
国家高技术研究发展计划项目(863计划)(编号2011AA05112)
国家自然科学基金项目(编号51077042)
高等学校博士学科点专项科研基金(编号20120094110008)
关键词
最优潮流
连续变量
离散变量
混合整数非线性规划
求解方法
optimal power flow
discrete variable
continuous variable
mixed-integer nonlinear programming
solving methods