期刊文献+

应力强度因子对高温水环境中镍基合金裂尖电化学腐蚀电位的影响(英文) 被引量:5

Effects of Stress Intensity Factor on Electrochemical Corrosion Potential at Crack Tip of Nickel-Based Alloys in High Temperature Water Environments
原文传递
导出
摘要 在高温水环境中,应力会提高镍基合金裂纹尖端的阳极溶解速率并加速裂纹扩展。采用弹塑性有限元方法,对高温水环境中镍基合金裂纹尖端应力和电化学腐蚀的关系进行研究。分析了应力强度因子对模拟高温水环境中600合金1T-CT试样裂纹尖端表面电化学腐蚀电位的影响,并讨论了弹性变形和塑性变形对裂纹尖端电化学腐蚀电位变化的影响。 Stress will enhance the local anodic dissolution rate of nickel-based alloys at crack tip and accelerate the crack propagation in high temperature water environments. The relationship between stress and corrosion was studied by the elastic plastic finite element method. The effects of stress intensity factor on the surface electrochemical corrosion potential (ECP) at the crack tip of alloys 600 with a 1T-CT specimen in simulated boiling water reactor environment were analyzed. The effects of plastic deformation and elastic deformation on the changes of the electro-chemical corrosion potential around the crack tip were also discussed. The results indicate that the effects of stress intensity factors on ECP changes of the crack tip surface have the maximum values in the front of the crock propagation, The values of ECP changes increase with the increase of stress obvious than that of elastic deformation. and they decrease gradually towards the sides of the crack. intensity factor. The effect of plastic deformation is more
机构地区 西安科技大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2014年第3期513-518,共6页 Rare Metal Materials and Engineering
基金 National Natural Science Foundation of China(11072191) Scientific Research Program Funded by Shaanxi Provincial Education Department(12JK0657) Specialized Research Fund for the Doctoral Program of Higher Education(20136121110001)
关键词 应力强度因子 电化学腐蚀电位 裂纹尖端 有限元 高温水 stress intensity factor electrochemical corrosion potential (ECP) crack tip~ finite element method high temperature water
  • 相关文献

参考文献17

  • 1David Talbot, James Talbot. Corrosion Science and Technology [M]. London: CRC Press, 1997.
  • 2United States Nuclear Regulatory Commission. NUREG/ BR-0353[R], Washington, DC: Rev. 1, 2008.
  • 3Philippe Marcus. Corrosion Mechanisms in Theory and Practice, 2ed [M]. New York: Marcel Dekker Inc., 2002.
  • 4Tillmann W, Vogli E, Mohapatra S. Surface and Coatings Technology[J]. 2007, 202(4-7): 750.
  • 5Lu B T, Luo J L, Norton P R et al. Acta Materialia[J]. 2009, 57(1): 41.
  • 6Xue He, Xue X F, Tang Wet al. Rare Metal Materials and Engineering[J]. 2011, 40(7): 1188 (in Chinese).
  • 7Li Huilu, Feng Jianing, Chu Wuyang. Rare Metal Materials and Engineering[J]. 2012, 41 ($2): 247 (in Chinese).
  • 8Xiong Qingren, Li Weiwei, Fu Anqing et al. Rare Metal Materials and Engineering[J]. 2012, 41 ($2): 749 (in Chinese).
  • 9Xu L Y, Cheng Y F. Corrosion Science[J]. 2012, 59:103.
  • 10Xu L Y, Cheng Y F. Corrosion Science[J]. 2012, 64:145.

同被引文献26

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部